Spaces:
Sleeping
Sleeping
File size: 1,695 Bytes
55478d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
import numpy as np
import torch
class EarlyStopping:
"""Early stops the training if validation loss doesn't improve after a given patience."""
def __init__(self, patience=1, verbose=False, delta=0):
"""
Args:
patience (int): How long to wait after last time validation loss improved.
Default: 7
verbose (bool): If True, prints a message for each validation loss improvement.
Default: False
delta (float): Minimum change in the monitored quantity to qualify as an improvement.
Default: 0
"""
self.patience = patience
self.verbose = verbose
self.counter = 0
self.best_score = None
self.early_stop = False
self.score_max = -np.Inf
self.delta = delta
def __call__(self, score, model):
if self.best_score is None:
self.best_score = score
self.save_checkpoint(score, model)
elif score < self.best_score - self.delta:
self.counter += 1
print(f'EarlyStopping counter: {self.counter} out of {self.patience}')
if self.counter >= self.patience:
self.early_stop = True
else:
self.best_score = score
self.save_checkpoint(score, model)
self.counter = 0
def save_checkpoint(self, score, model):
'''Saves model when validation loss decrease.'''
if self.verbose:
print(f'Validation accuracy increased ({self.score_max:.6f} --> {score:.6f}). Saving model ...')
model.save_networks('best')
self.score_max = score |