File size: 1,695 Bytes
55478d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import numpy as np
import torch


class EarlyStopping:
    """Early stops the training if validation loss doesn't improve after a given patience."""
    def __init__(self, patience=1, verbose=False, delta=0):
        """
        Args:
            patience (int): How long to wait after last time validation loss improved.
                            Default: 7
            verbose (bool): If True, prints a message for each validation loss improvement. 
                            Default: False
            delta (float): Minimum change in the monitored quantity to qualify as an improvement.
                            Default: 0
        """
        self.patience = patience
        self.verbose = verbose
        self.counter = 0
        self.best_score = None
        self.early_stop = False
        self.score_max = -np.Inf
        self.delta = delta

    def __call__(self, score, model):
        if self.best_score is None:
            self.best_score = score
            self.save_checkpoint(score, model)
        elif score < self.best_score - self.delta:
            self.counter += 1
            print(f'EarlyStopping counter: {self.counter} out of {self.patience}')
            if self.counter >= self.patience:
                self.early_stop = True
        else:
            self.best_score = score
            self.save_checkpoint(score, model)
            self.counter = 0

    def save_checkpoint(self, score, model):
        '''Saves model when validation loss decrease.'''
        if self.verbose:
            print(f'Validation accuracy increased ({self.score_max:.6f} --> {score:.6f}).  Saving model ...')
        model.save_networks('best')
        self.score_max = score