File size: 2,028 Bytes
55478d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import os
import torch
import torch.nn as nn
from torch.nn import init
from torch.optim import lr_scheduler


class BaseModel(nn.Module):
    def __init__(self, opt):
        super(BaseModel, self).__init__()
        self.opt = opt
        self.total_steps = 0
        self.save_dir = os.path.join(opt.checkpoints_dir, opt.name)
        self.device = torch.device('cuda:{}'.format(opt.gpu_ids[0])) if opt.gpu_ids else torch.device('cpu')

    def save_networks(self, save_filename):
        save_path = os.path.join(self.save_dir, save_filename)

        # serialize model and optimizer to dict
        state_dict = {
            'model': self.model.state_dict(),
            'optimizer' : self.optimizer.state_dict(),
            'total_steps' : self.total_steps,
        }

        torch.save(state_dict, save_path)


    def eval(self):
        self.model.eval()

    def test(self):
        with torch.no_grad():
            self.forward()


def init_weights(net, init_type='normal', gain=0.02):
    def init_func(m):
        classname = m.__class__.__name__
        if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1):
            if init_type == 'normal':
                init.normal_(m.weight.data, 0.0, gain)
            elif init_type == 'xavier':
                init.xavier_normal_(m.weight.data, gain=gain)
            elif init_type == 'kaiming':
                init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
            elif init_type == 'orthogonal':
                init.orthogonal_(m.weight.data, gain=gain)
            else:
                raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
            if hasattr(m, 'bias') and m.bias is not None:
                init.constant_(m.bias.data, 0.0)
        elif classname.find('BatchNorm2d') != -1:
            init.normal_(m.weight.data, 1.0, gain)
            init.constant_(m.bias.data, 0.0)

    print('initialize network with %s' % init_type)
    net.apply(init_func)