Spaces:
Sleeping
Sleeping
File size: 13,206 Bytes
55478d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
# This code is built from the PyTorch examples repository: https://github.com/pytorch/vision/tree/master/torchvision/models.
# Copyright (c) 2017 Torch Contributors.
# The Pytorch examples are available under the BSD 3-Clause License.
#
# ==========================================================================================
#
# Adobe’s modifications are Copyright 2019 Adobe. All rights reserved.
# Adobe’s modifications are licensed under the Creative Commons Attribution-NonCommercial-ShareAlike
# 4.0 International Public License (CC-NC-SA-4.0). To view a copy of the license, visit
# https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode.
#
# ==========================================================================================
#
# BSD-3 License
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# * Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
import torch.nn as nn
import torch.utils.model_zoo as model_zoo
from .lpf import *
__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
'resnet152', 'resnext50_32x4d', 'resnext101_32x8d']
# model_urls = {
# 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
# 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
# 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
# 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
# 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
# }
def conv3x3(in_planes, out_planes, stride=1, groups=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, groups=groups, bias=False)
def conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, norm_layer=None, filter_size=1):
super(BasicBlock, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
if groups != 1:
raise ValueError('BasicBlock only supports groups=1')
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv3x3(inplanes, planes)
self.bn1 = norm_layer(planes)
self.relu = nn.ReLU(inplace=True)
if(stride==1):
self.conv2 = conv3x3(planes,planes)
else:
self.conv2 = nn.Sequential(Downsample(filt_size=filter_size, stride=stride, channels=planes),
conv3x3(planes, planes),)
self.bn2 = norm_layer(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, norm_layer=None, filter_size=1):
super(Bottleneck, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
# Both self.conv2 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv1x1(inplanes, planes)
self.bn1 = norm_layer(planes)
self.conv2 = conv3x3(planes, planes, groups) # stride moved
self.bn2 = norm_layer(planes)
if(stride==1):
self.conv3 = conv1x1(planes, planes * self.expansion)
else:
self.conv3 = nn.Sequential(Downsample(filt_size=filter_size, stride=stride, channels=planes),
conv1x1(planes, planes * self.expansion))
self.bn3 = norm_layer(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes=1000, zero_init_residual=False,
groups=1, width_per_group=64, norm_layer=None, filter_size=1, pool_only=True):
super(ResNet, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
planes = [int(width_per_group * groups * 2 ** i) for i in range(4)]
self.inplanes = planes[0]
if(pool_only):
self.conv1 = nn.Conv2d(3, planes[0], kernel_size=7, stride=2, padding=3, bias=False)
else:
self.conv1 = nn.Conv2d(3, planes[0], kernel_size=7, stride=1, padding=3, bias=False)
self.bn1 = norm_layer(planes[0])
self.relu = nn.ReLU(inplace=True)
if(pool_only):
self.maxpool = nn.Sequential(*[nn.MaxPool2d(kernel_size=2, stride=1),
Downsample(filt_size=filter_size, stride=2, channels=planes[0])])
else:
self.maxpool = nn.Sequential(*[Downsample(filt_size=filter_size, stride=2, channels=planes[0]),
nn.MaxPool2d(kernel_size=2, stride=1),
Downsample(filt_size=filter_size, stride=2, channels=planes[0])])
self.layer1 = self._make_layer(block, planes[0], layers[0], groups=groups, norm_layer=norm_layer)
self.layer2 = self._make_layer(block, planes[1], layers[1], stride=2, groups=groups, norm_layer=norm_layer, filter_size=filter_size)
self.layer3 = self._make_layer(block, planes[2], layers[2], stride=2, groups=groups, norm_layer=norm_layer, filter_size=filter_size)
self.layer4 = self._make_layer(block, planes[3], layers[3], stride=2, groups=groups, norm_layer=norm_layer, filter_size=filter_size)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(planes[3] * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
if(m.in_channels!=m.out_channels or m.out_channels!=m.groups or m.bias is not None):
# don't want to reinitialize downsample layers, code assuming normal conv layers will not have these characteristics
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
else:
print('Not initializing')
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
# Zero-initialize the last BN in each residual branch,
# so that the residual branch starts with zeros, and each residual block behaves like an identity.
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
if zero_init_residual:
for m in self.modules():
if isinstance(m, Bottleneck):
nn.init.constant_(m.bn3.weight, 0)
elif isinstance(m, BasicBlock):
nn.init.constant_(m.bn2.weight, 0)
def _make_layer(self, block, planes, blocks, stride=1, groups=1, norm_layer=None, filter_size=1):
if norm_layer is None:
norm_layer = nn.BatchNorm2d
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
# downsample = nn.Sequential(
# conv1x1(self.inplanes, planes * block.expansion, stride, filter_size=filter_size),
# norm_layer(planes * block.expansion),
# )
downsample = [Downsample(filt_size=filter_size, stride=stride, channels=self.inplanes),] if(stride !=1) else []
downsample += [conv1x1(self.inplanes, planes * block.expansion, 1),
norm_layer(planes * block.expansion)]
# print(downsample)
downsample = nn.Sequential(*downsample)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample, groups, norm_layer, filter_size=filter_size))
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(block(self.inplanes, planes, groups=groups, norm_layer=norm_layer, filter_size=filter_size))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
def resnet18(pretrained=False, filter_size=1, pool_only=True, **kwargs):
"""Constructs a ResNet-18 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(BasicBlock, [2, 2, 2, 2], filter_size=filter_size, pool_only=pool_only, **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet18']))
return model
def resnet34(pretrained=False, filter_size=1, pool_only=True, **kwargs):
"""Constructs a ResNet-34 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(BasicBlock, [3, 4, 6, 3], filter_size=filter_size, pool_only=pool_only, **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet34']))
return model
def resnet50(pretrained=False, filter_size=1, pool_only=True, **kwargs):
"""Constructs a ResNet-50 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 4, 6, 3], filter_size=filter_size, pool_only=pool_only, **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet50']))
return model
def resnet101(pretrained=False, filter_size=1, pool_only=True, **kwargs):
"""Constructs a ResNet-101 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 4, 23, 3], filter_size=filter_size, pool_only=pool_only, **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet101']))
return model
def resnet152(pretrained=False, filter_size=1, pool_only=True, **kwargs):
"""Constructs a ResNet-152 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 8, 36, 3], filter_size=filter_size, pool_only=pool_only, **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet152']))
return model
def resnext50_32x4d(pretrained=False, filter_size=1, pool_only=True, **kwargs):
model = ResNet(Bottleneck, [3, 4, 6, 3], groups=4, width_per_group=32, filter_size=filter_size, pool_only=pool_only, **kwargs)
# if pretrained:
# model.load_state_dict(model_zoo.load_url(model_urls['resnet50']))
return model
def resnext101_32x8d(pretrained=False, filter_size=1, pool_only=True, **kwargs):
model = ResNet(Bottleneck, [3, 4, 23, 3], groups=8, width_per_group=32, filter_size=filter_size, pool_only=pool_only, **kwargs)
# if pretrained:
# model.load_state_dict(model_zoo.load_url(model_urls['resnet50']))
return model
|