File size: 13,206 Bytes
55478d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
# This code is built from the PyTorch examples repository: https://github.com/pytorch/vision/tree/master/torchvision/models.
# Copyright (c) 2017 Torch Contributors.
# The Pytorch examples are available under the BSD 3-Clause License.
#
# ==========================================================================================
#
# Adobe’s modifications are Copyright 2019 Adobe. All rights reserved.
# Adobe’s modifications are licensed under the Creative Commons Attribution-NonCommercial-ShareAlike
# 4.0 International Public License (CC-NC-SA-4.0). To view a copy of the license, visit
# https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode.
#
# ==========================================================================================
#
# BSD-3 License
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
#   list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice,
#   this list of conditions and the following disclaimer in the documentation
#   and/or other materials provided with the distribution.
#
# * Neither the name of the copyright holder nor the names of its
#   contributors may be used to endorse or promote products derived from
#   this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

import torch.nn as nn
import torch.utils.model_zoo as model_zoo
from .lpf import *

__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
           'resnet152', 'resnext50_32x4d', 'resnext101_32x8d']


# model_urls = {
#     'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
#     'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
#     'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
#     'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
#     'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
# }


def conv3x3(in_planes, out_planes, stride=1, groups=1):
    """3x3 convolution with padding"""
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                 padding=1, groups=groups, bias=False)

def conv1x1(in_planes, out_planes, stride=1):
    """1x1 convolution"""
    return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)

class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, norm_layer=None, filter_size=1):
        super(BasicBlock, self).__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        if groups != 1:
            raise ValueError('BasicBlock only supports groups=1')
        # Both self.conv1 and self.downsample layers downsample the input when stride != 1
        self.conv1 = conv3x3(inplanes, planes)
        self.bn1 = norm_layer(planes)
        self.relu = nn.ReLU(inplace=True)
        if(stride==1):
            self.conv2 = conv3x3(planes,planes)
        else:
            self.conv2 = nn.Sequential(Downsample(filt_size=filter_size, stride=stride, channels=planes),
                conv3x3(planes, planes),)
        self.bn2 = norm_layer(planes)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)

        return out


class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, norm_layer=None, filter_size=1):
        super(Bottleneck, self).__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        # Both self.conv2 and self.downsample layers downsample the input when stride != 1
        self.conv1 = conv1x1(inplanes, planes)
        self.bn1 = norm_layer(planes)
        self.conv2 = conv3x3(planes, planes, groups) # stride moved
        self.bn2 = norm_layer(planes)
        if(stride==1):
            self.conv3 = conv1x1(planes, planes * self.expansion)
        else:
            self.conv3 = nn.Sequential(Downsample(filt_size=filter_size, stride=stride, channels=planes),
                conv1x1(planes, planes * self.expansion))
        self.bn3 = norm_layer(planes * self.expansion)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)

        return out


class ResNet(nn.Module):

    def __init__(self, block, layers, num_classes=1000, zero_init_residual=False,
                 groups=1, width_per_group=64, norm_layer=None, filter_size=1, pool_only=True):
        super(ResNet, self).__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        planes = [int(width_per_group * groups * 2 ** i) for i in range(4)]
        self.inplanes = planes[0]

        if(pool_only):
            self.conv1 = nn.Conv2d(3, planes[0], kernel_size=7, stride=2, padding=3, bias=False)
        else:
            self.conv1 = nn.Conv2d(3, planes[0], kernel_size=7, stride=1, padding=3, bias=False)
        self.bn1 = norm_layer(planes[0])
        self.relu = nn.ReLU(inplace=True)

        if(pool_only):
            self.maxpool = nn.Sequential(*[nn.MaxPool2d(kernel_size=2, stride=1), 
                Downsample(filt_size=filter_size, stride=2, channels=planes[0])])
        else:
            self.maxpool = nn.Sequential(*[Downsample(filt_size=filter_size, stride=2, channels=planes[0]), 
                nn.MaxPool2d(kernel_size=2, stride=1), 
                Downsample(filt_size=filter_size, stride=2, channels=planes[0])])

        self.layer1 = self._make_layer(block, planes[0], layers[0], groups=groups, norm_layer=norm_layer)
        self.layer2 = self._make_layer(block, planes[1], layers[1], stride=2, groups=groups, norm_layer=norm_layer, filter_size=filter_size)
        self.layer3 = self._make_layer(block, planes[2], layers[2], stride=2, groups=groups, norm_layer=norm_layer, filter_size=filter_size)
        self.layer4 = self._make_layer(block, planes[3], layers[3], stride=2, groups=groups, norm_layer=norm_layer, filter_size=filter_size)
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(planes[3] * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                if(m.in_channels!=m.out_channels or m.out_channels!=m.groups or m.bias is not None):
                    # don't want to reinitialize downsample layers, code assuming normal conv layers will not have these characteristics
                    nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                else:
                    print('Not initializing')
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

        # Zero-initialize the last BN in each residual branch,
        # so that the residual branch starts with zeros, and each residual block behaves like an identity.
        # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
        if zero_init_residual:
            for m in self.modules():
                if isinstance(m, Bottleneck):
                    nn.init.constant_(m.bn3.weight, 0)
                elif isinstance(m, BasicBlock):
                    nn.init.constant_(m.bn2.weight, 0)

    def _make_layer(self, block, planes, blocks, stride=1, groups=1, norm_layer=None, filter_size=1):
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            # downsample = nn.Sequential(
            #     conv1x1(self.inplanes, planes * block.expansion, stride, filter_size=filter_size),
            #     norm_layer(planes * block.expansion),
            # )

            downsample = [Downsample(filt_size=filter_size, stride=stride, channels=self.inplanes),] if(stride !=1) else []
            downsample += [conv1x1(self.inplanes, planes * block.expansion, 1),
                norm_layer(planes * block.expansion)]
            # print(downsample)
            downsample = nn.Sequential(*downsample)

        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample, groups, norm_layer, filter_size=filter_size))
        self.inplanes = planes * block.expansion
        for _ in range(1, blocks):
            layers.append(block(self.inplanes, planes, groups=groups, norm_layer=norm_layer, filter_size=filter_size))

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.avgpool(x)
        x = x.view(x.size(0), -1)
        x = self.fc(x)

        return x


def resnet18(pretrained=False, filter_size=1, pool_only=True, **kwargs):
    """Constructs a ResNet-18 model.
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = ResNet(BasicBlock, [2, 2, 2, 2], filter_size=filter_size, pool_only=pool_only, **kwargs)
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['resnet18']))
    return model


def resnet34(pretrained=False, filter_size=1, pool_only=True, **kwargs):
    """Constructs a ResNet-34 model.
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = ResNet(BasicBlock, [3, 4, 6, 3], filter_size=filter_size, pool_only=pool_only, **kwargs)
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['resnet34']))
    return model


def resnet50(pretrained=False, filter_size=1, pool_only=True, **kwargs):
    """Constructs a ResNet-50 model.
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = ResNet(Bottleneck, [3, 4, 6, 3], filter_size=filter_size, pool_only=pool_only, **kwargs)
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['resnet50']))
    return model


def resnet101(pretrained=False, filter_size=1, pool_only=True, **kwargs):
    """Constructs a ResNet-101 model.
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = ResNet(Bottleneck, [3, 4, 23, 3], filter_size=filter_size, pool_only=pool_only, **kwargs)
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['resnet101']))
    return model


def resnet152(pretrained=False, filter_size=1, pool_only=True, **kwargs):
    """Constructs a ResNet-152 model.
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = ResNet(Bottleneck, [3, 8, 36, 3], filter_size=filter_size, pool_only=pool_only, **kwargs)
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['resnet152']))
    return model


def resnext50_32x4d(pretrained=False, filter_size=1, pool_only=True, **kwargs):
    model = ResNet(Bottleneck, [3, 4, 6, 3], groups=4, width_per_group=32, filter_size=filter_size, pool_only=pool_only, **kwargs)
    # if pretrained:
    #     model.load_state_dict(model_zoo.load_url(model_urls['resnet50']))
    return model


def resnext101_32x8d(pretrained=False, filter_size=1, pool_only=True, **kwargs):
    model = ResNet(Bottleneck, [3, 4, 23, 3], groups=8, width_per_group=32, filter_size=filter_size, pool_only=pool_only, **kwargs)
    # if pretrained:
    #     model.load_state_dict(model_zoo.load_url(model_urls['resnet50']))
    return model