Spaces:
Sleeping
Sleeping
File size: 9,849 Bytes
55478d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
import argparse
from ast import arg
import os
import csv
import torch
import torchvision.transforms as transforms
import torch.utils.data
import numpy as np
from sklearn.metrics import average_precision_score, precision_recall_curve, accuracy_score
from torch.utils.data import Dataset
import sys
from models import get_model
from PIL import Image
import pickle
from tqdm import tqdm
from io import BytesIO
from copy import deepcopy
from dataset_paths import DATASET_PATHS
import random
import shutil
from scipy.ndimage.filters import gaussian_filter
SEED = 0
def set_seed():
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
np.random.seed(SEED)
random.seed(SEED)
MEAN = {
"imagenet":[0.485, 0.456, 0.406],
"clip":[0.48145466, 0.4578275, 0.40821073]
}
STD = {
"imagenet":[0.229, 0.224, 0.225],
"clip":[0.26862954, 0.26130258, 0.27577711]
}
def find_best_threshold(y_true, y_pred):
"We assume first half is real 0, and the second half is fake 1"
N = y_true.shape[0]
if y_pred[0:N//2].max() <= y_pred[N//2:N].min(): # perfectly separable case
return (y_pred[0:N//2].max() + y_pred[N//2:N].min()) / 2
best_acc = 0
best_thres = 0
for thres in y_pred:
temp = deepcopy(y_pred)
temp[temp>=thres] = 1
temp[temp<thres] = 0
acc = (temp == y_true).sum() / N
if acc >= best_acc:
best_thres = thres
best_acc = acc
return best_thres
def png2jpg(img, quality):
out = BytesIO()
img.save(out, format='jpeg', quality=quality) # ranging from 0-95, 75 is default
img = Image.open(out)
# load from memory before ByteIO closes
img = np.array(img)
out.close()
return Image.fromarray(img)
def gaussian_blur(img, sigma):
img = np.array(img)
gaussian_filter(img[:,:,0], output=img[:,:,0], sigma=sigma)
gaussian_filter(img[:,:,1], output=img[:,:,1], sigma=sigma)
gaussian_filter(img[:,:,2], output=img[:,:,2], sigma=sigma)
return Image.fromarray(img)
def calculate_acc(y_true, y_pred, thres):
r_acc = accuracy_score(y_true[y_true==0], y_pred[y_true==0] > thres)
f_acc = accuracy_score(y_true[y_true==1], y_pred[y_true==1] > thres)
acc = accuracy_score(y_true, y_pred > thres)
return r_acc, f_acc, acc
def validate(model, loader, find_thres=False):
with torch.no_grad():
y_true, y_pred = [], []
print ("Length of dataset: %d" %(len(loader)))
for img, label in loader:
in_tens = img.cuda()
y_pred.extend(model(in_tens).sigmoid().flatten().tolist())
y_true.extend(label.flatten().tolist())
y_true, y_pred = np.array(y_true), np.array(y_pred)
# ================== save this if you want to plot the curves =========== #
# torch.save( torch.stack( [torch.tensor(y_true), torch.tensor(y_pred)] ), 'baseline_predication_for_pr_roc_curve.pth' )
# exit()
# =================================================================== #
# Get AP
ap = average_precision_score(y_true, y_pred)
# Acc based on 0.5
r_acc0, f_acc0, acc0 = calculate_acc(y_true, y_pred, 0.5)
if not find_thres:
return ap, r_acc0, f_acc0, acc0
# Acc based on the best thres
best_thres = find_best_threshold(y_true, y_pred)
r_acc1, f_acc1, acc1 = calculate_acc(y_true, y_pred, best_thres)
return ap, r_acc0, f_acc0, acc0, r_acc1, f_acc1, acc1, best_thres
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = #
def recursively_read(rootdir, must_contain, exts=["png", "jpg", "JPEG", "jpeg", "bmp"]):
out = []
for r, d, f in os.walk(rootdir):
for file in f:
if (file.split('.')[1] in exts) and (must_contain in os.path.join(r, file)):
out.append(os.path.join(r, file))
return out
def get_list(path, must_contain=''):
if ".pickle" in path:
with open(path, 'rb') as f:
image_list = pickle.load(f)
image_list = [ item for item in image_list if must_contain in item ]
else:
image_list = recursively_read(path, must_contain)
return image_list
class RealFakeDataset(Dataset):
def __init__(self, real_path,
fake_path,
data_mode,
max_sample,
arch,
jpeg_quality=None,
gaussian_sigma=None):
assert data_mode in ["wang2020", "ours"]
self.jpeg_quality = jpeg_quality
self.gaussian_sigma = gaussian_sigma
# = = = = = = data path = = = = = = = = = #
if type(real_path) == str and type(fake_path) == str:
real_list, fake_list = self.read_path(real_path, fake_path, data_mode, max_sample)
else:
real_list = []
fake_list = []
for real_p, fake_p in zip(real_path, fake_path):
real_l, fake_l = self.read_path(real_p, fake_p, data_mode, max_sample)
real_list += real_l
fake_list += fake_l
self.total_list = real_list + fake_list
# = = = = = = label = = = = = = = = = #
self.labels_dict = {}
for i in real_list:
self.labels_dict[i] = 0
for i in fake_list:
self.labels_dict[i] = 1
stat_from = "imagenet" if arch.lower().startswith("imagenet") else "clip"
self.transform = transforms.Compose([
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize( mean=MEAN[stat_from], std=STD[stat_from] ),
])
def read_path(self, real_path, fake_path, data_mode, max_sample):
if data_mode == 'wang2020':
real_list = get_list(real_path, must_contain='0_real')
fake_list = get_list(fake_path, must_contain='1_fake')
else:
real_list = get_list(real_path)
fake_list = get_list(fake_path)
if max_sample is not None:
if (max_sample > len(real_list)) or (max_sample > len(fake_list)):
max_sample = 100
print("not enough images, max_sample falling to 100")
random.shuffle(real_list)
random.shuffle(fake_list)
real_list = real_list[0:max_sample]
fake_list = fake_list[0:max_sample]
assert len(real_list) == len(fake_list)
return real_list, fake_list
def __len__(self):
return len(self.total_list)
def __getitem__(self, idx):
img_path = self.total_list[idx]
label = self.labels_dict[img_path]
img = Image.open(img_path).convert("RGB")
if self.gaussian_sigma is not None:
img = gaussian_blur(img, self.gaussian_sigma)
if self.jpeg_quality is not None:
img = png2jpg(img, self.jpeg_quality)
img = self.transform(img)
return img, label
if __name__ == '__main__':
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--real_path', type=str, default=None, help='dir name or a pickle')
parser.add_argument('--fake_path', type=str, default=None, help='dir name or a pickle')
parser.add_argument('--data_mode', type=str, default=None, help='wang2020 or ours')
parser.add_argument('--max_sample', type=int, default=1000, help='only check this number of images for both fake/real')
parser.add_argument('--arch', type=str, default='res50')
parser.add_argument('--ckpt', type=str, default='./pretrained_weights/fc_weights.pth')
parser.add_argument('--result_folder', type=str, default='result', help='')
parser.add_argument('--batch_size', type=int, default=128)
parser.add_argument('--jpeg_quality', type=int, default=None, help="100, 90, 80, ... 30. Used to test robustness of our model. Not apply if None")
parser.add_argument('--gaussian_sigma', type=int, default=None, help="0,1,2,3,4. Used to test robustness of our model. Not apply if None")
opt = parser.parse_args()
if os.path.exists(opt.result_folder):
shutil.rmtree(opt.result_folder)
os.makedirs(opt.result_folder)
model = get_model(opt.arch)
state_dict = torch.load(opt.ckpt, map_location='cpu')
model.fc.load_state_dict(state_dict)
print ("Model loaded..")
model.eval()
model.cuda()
if (opt.real_path == None) or (opt.fake_path == None) or (opt.data_mode == None):
dataset_paths = DATASET_PATHS
else:
dataset_paths = [ dict(real_path=opt.real_path, fake_path=opt.fake_path, data_mode=opt.data_mode) ]
for dataset_path in (dataset_paths):
set_seed()
dataset = RealFakeDataset( dataset_path['real_path'],
dataset_path['fake_path'],
dataset_path['data_mode'],
opt.max_sample,
opt.arch,
jpeg_quality=opt.jpeg_quality,
gaussian_sigma=opt.gaussian_sigma,
)
loader = torch.utils.data.DataLoader(dataset, batch_size=opt.batch_size, shuffle=False, num_workers=4)
ap, r_acc0, f_acc0, acc0, r_acc1, f_acc1, acc1, best_thres = validate(model, loader, find_thres=True)
with open( os.path.join(opt.result_folder,'ap.txt'), 'a') as f:
f.write(dataset_path['key']+': ' + str(round(ap*100, 2))+'\n' )
with open( os.path.join(opt.result_folder,'acc0.txt'), 'a') as f:
f.write(dataset_path['key']+': ' + str(round(r_acc0*100, 2))+' '+str(round(f_acc0*100, 2))+' '+str(round(acc0*100, 2))+'\n' )
|