Spaces:
Sleeping
Sleeping
# Copyright (c) 2019, Adobe Inc. All rights reserved. | |
# | |
# This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike | |
# 4.0 International Public License. To view a copy of this license, visit | |
# https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode. | |
import torch | |
import torch.nn.parallel | |
import numpy as np | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from IPython import embed | |
class Downsample(nn.Module): | |
def __init__(self, pad_type='reflect', filt_size=3, stride=2, channels=None, pad_off=0): | |
super(Downsample, self).__init__() | |
self.filt_size = filt_size | |
self.pad_off = pad_off | |
self.pad_sizes = [int(1.*(filt_size-1)/2), int(np.ceil(1.*(filt_size-1)/2)), int(1.*(filt_size-1)/2), int(np.ceil(1.*(filt_size-1)/2))] | |
self.pad_sizes = [pad_size+pad_off for pad_size in self.pad_sizes] | |
self.stride = stride | |
self.off = int((self.stride-1)/2.) | |
self.channels = channels | |
# print('Filter size [%i]'%filt_size) | |
if(self.filt_size==1): | |
a = np.array([1.,]) | |
elif(self.filt_size==2): | |
a = np.array([1., 1.]) | |
elif(self.filt_size==3): | |
a = np.array([1., 2., 1.]) | |
elif(self.filt_size==4): | |
a = np.array([1., 3., 3., 1.]) | |
elif(self.filt_size==5): | |
a = np.array([1., 4., 6., 4., 1.]) | |
elif(self.filt_size==6): | |
a = np.array([1., 5., 10., 10., 5., 1.]) | |
elif(self.filt_size==7): | |
a = np.array([1., 6., 15., 20., 15., 6., 1.]) | |
filt = torch.Tensor(a[:,None]*a[None,:]) | |
filt = filt/torch.sum(filt) | |
self.register_buffer('filt', filt[None,None,:,:].repeat((self.channels,1,1,1))) | |
self.pad = get_pad_layer(pad_type)(self.pad_sizes) | |
def forward(self, inp): | |
if(self.filt_size==1): | |
if(self.pad_off==0): | |
return inp[:,:,::self.stride,::self.stride] | |
else: | |
return self.pad(inp)[:,:,::self.stride,::self.stride] | |
else: | |
return F.conv2d(self.pad(inp), self.filt, stride=self.stride, groups=inp.shape[1]) | |
def get_pad_layer(pad_type): | |
if(pad_type in ['refl','reflect']): | |
PadLayer = nn.ReflectionPad2d | |
elif(pad_type in ['repl','replicate']): | |
PadLayer = nn.ReplicationPad2d | |
elif(pad_type=='zero'): | |
PadLayer = nn.ZeroPad2d | |
else: | |
print('Pad type [%s] not recognized'%pad_type) | |
return PadLayer | |
class Downsample1D(nn.Module): | |
def __init__(self, pad_type='reflect', filt_size=3, stride=2, channels=None, pad_off=0): | |
super(Downsample1D, self).__init__() | |
self.filt_size = filt_size | |
self.pad_off = pad_off | |
self.pad_sizes = [int(1. * (filt_size - 1) / 2), int(np.ceil(1. * (filt_size - 1) / 2))] | |
self.pad_sizes = [pad_size + pad_off for pad_size in self.pad_sizes] | |
self.stride = stride | |
self.off = int((self.stride - 1) / 2.) | |
self.channels = channels | |
# print('Filter size [%i]' % filt_size) | |
if(self.filt_size == 1): | |
a = np.array([1., ]) | |
elif(self.filt_size == 2): | |
a = np.array([1., 1.]) | |
elif(self.filt_size == 3): | |
a = np.array([1., 2., 1.]) | |
elif(self.filt_size == 4): | |
a = np.array([1., 3., 3., 1.]) | |
elif(self.filt_size == 5): | |
a = np.array([1., 4., 6., 4., 1.]) | |
elif(self.filt_size == 6): | |
a = np.array([1., 5., 10., 10., 5., 1.]) | |
elif(self.filt_size == 7): | |
a = np.array([1., 6., 15., 20., 15., 6., 1.]) | |
filt = torch.Tensor(a) | |
filt = filt / torch.sum(filt) | |
self.register_buffer('filt', filt[None, None, :].repeat((self.channels, 1, 1))) | |
self.pad = get_pad_layer_1d(pad_type)(self.pad_sizes) | |
def forward(self, inp): | |
if(self.filt_size == 1): | |
if(self.pad_off == 0): | |
return inp[:, :, ::self.stride] | |
else: | |
return self.pad(inp)[:, :, ::self.stride] | |
else: | |
return F.conv1d(self.pad(inp), self.filt, stride=self.stride, groups=inp.shape[1]) | |
def get_pad_layer_1d(pad_type): | |
if(pad_type in ['refl', 'reflect']): | |
PadLayer = nn.ReflectionPad1d | |
elif(pad_type in ['repl', 'replicate']): | |
PadLayer = nn.ReplicationPad1d | |
elif(pad_type == 'zero'): | |
PadLayer = nn.ZeroPad1d | |
else: | |
print('Pad type [%s] not recognized' % pad_type) | |
return PadLayer | |