David310's picture
add project files
55478d8
import functools
import torch
import torch.nn as nn
from networks.base_model import BaseModel, init_weights
import sys
from models import get_model
class Trainer(BaseModel):
def name(self):
return 'Trainer'
def __init__(self, opt):
super(Trainer, self).__init__(opt)
self.opt = opt
self.model = get_model(opt.arch)
torch.nn.init.normal_(self.model.fc.weight.data, 0.0, opt.init_gain)
if opt.fix_backbone:
params = []
for name, p in self.model.named_parameters():
if name=="fc.weight" or name=="fc.bias":
params.append(p)
else:
p.requires_grad = False
else:
print("Your backbone is not fixed. Are you sure you want to proceed? If this is a mistake, enable the --fix_backbone command during training and rerun")
import time
time.sleep(3)
params = self.model.parameters()
if opt.optim == 'adam':
self.optimizer = torch.optim.AdamW(params, lr=opt.lr, betas=(opt.beta1, 0.999), weight_decay=opt.weight_decay)
elif opt.optim == 'sgd':
self.optimizer = torch.optim.SGD(params, lr=opt.lr, momentum=0.0, weight_decay=opt.weight_decay)
else:
raise ValueError("optim should be [adam, sgd]")
self.loss_fn = nn.BCEWithLogitsLoss()
self.model.to(opt.gpu_ids[0])
def adjust_learning_rate(self, min_lr=1e-6):
for param_group in self.optimizer.param_groups:
param_group['lr'] /= 10.
if param_group['lr'] < min_lr:
return False
return True
def set_input(self, input):
self.input = input[0].to(self.device)
self.label = input[1].to(self.device).float()
def forward(self):
self.output = self.model(self.input)
self.output = self.output.view(-1).unsqueeze(1)
def get_loss(self):
return self.loss_fn(self.output.squeeze(1), self.label)
def optimize_parameters(self):
self.forward()
self.loss = self.loss_fn(self.output.squeeze(1), self.label)
self.optimizer.zero_grad()
self.loss.backward()
self.optimizer.step()