from .clip import clip from PIL import Image import torch.nn as nn CHANNELS = { "RN50" : 1024, "ViT-L/14" : 768 } class CLIPModel(nn.Module): def __init__(self, name, num_classes=1): super(CLIPModel, self).__init__() self.model, self.preprocess = clip.load(name, device="cpu") # self.preprecess will not be used during training, which is handled in Dataset class self.fc = nn.Linear( CHANNELS[name], num_classes ) def forward(self, x, return_feature=False): features = self.model.encode_image(x) # print(features.keys()) """ 使用的是ViT-Large, 共24层 选择第24、22、20层的[cls]feature做加权平均 """ if return_feature: return features['after_projection'] # print(features['after_projection'].shape) # print(features['layer21'].shape) # print(features['layer19'].shape) # features = 0.5*features['after_projection'] + 0.3*features['layer21'] + 0.2*features['layer19'] # print(features.shape) features = features['res_output'] return self.fc(features)