import os import torch import torch.nn as nn from torch.nn import init from torch.optim import lr_scheduler class BaseModel(nn.Module): def __init__(self, opt): super(BaseModel, self).__init__() self.opt = opt self.total_steps = 0 self.save_dir = os.path.join(opt.checkpoints_dir, opt.name) self.device = torch.device('cuda:{}'.format(opt.gpu_ids[0])) if opt.gpu_ids else torch.device('cpu') def save_networks(self, save_filename): save_path = os.path.join(self.save_dir, save_filename) # serialize model and optimizer to dict state_dict = { 'model': self.model.state_dict(), 'optimizer' : self.optimizer.state_dict(), 'total_steps' : self.total_steps, } torch.save(state_dict, save_path) def eval(self): self.model.eval() def test(self): with torch.no_grad(): self.forward() def init_weights(net, init_type='normal', gain=0.02): def init_func(m): classname = m.__class__.__name__ if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1): if init_type == 'normal': init.normal_(m.weight.data, 0.0, gain) elif init_type == 'xavier': init.xavier_normal_(m.weight.data, gain=gain) elif init_type == 'kaiming': init.kaiming_normal_(m.weight.data, a=0, mode='fan_in') elif init_type == 'orthogonal': init.orthogonal_(m.weight.data, gain=gain) else: raise NotImplementedError('initialization method [%s] is not implemented' % init_type) if hasattr(m, 'bias') and m.bias is not None: init.constant_(m.bias.data, 0.0) elif classname.find('BatchNorm2d') != -1: init.normal_(m.weight.data, 1.0, gain) init.constant_(m.bias.data, 0.0) print('initialize network with %s' % init_type) net.apply(init_func)