import os import time from tensorboardX import SummaryWriter from validate import validate from data import create_dataloader from earlystop import EarlyStopping from networks.trainer import Trainer from options.train_options import TrainOptions """Currently assumes jpg_prob, blur_prob 0 or 1""" def get_val_opt(): val_opt = TrainOptions().parse(print_options=False) val_opt.isTrain = False val_opt.no_resize = False val_opt.no_crop = False val_opt.serial_batches = True val_opt.data_label = 'val' val_opt.jpg_method = ['pil'] if len(val_opt.blur_sig) == 2: b_sig = val_opt.blur_sig val_opt.blur_sig = [(b_sig[0] + b_sig[1]) / 2] if len(val_opt.jpg_qual) != 1: j_qual = val_opt.jpg_qual val_opt.jpg_qual = [int((j_qual[0] + j_qual[-1]) / 2)] return val_opt if __name__ == '__main__': opt = TrainOptions().parse() val_opt = get_val_opt() model = Trainer(opt) data_loader = create_dataloader(opt) val_loader = create_dataloader(val_opt) train_writer = SummaryWriter(os.path.join(opt.checkpoints_dir, opt.name, "train")) val_writer = SummaryWriter(os.path.join(opt.checkpoints_dir, opt.name, "val")) early_stopping = EarlyStopping(patience=opt.earlystop_epoch, delta=-0.001, verbose=True) start_time = time.time() print ("Length of data loader: %d" %(len(data_loader))) for epoch in range(opt.niter): for i, data in enumerate(data_loader): model.total_steps += 1 model.set_input(data) model.optimize_parameters() if model.total_steps % opt.loss_freq == 0: print("Train loss: {} at step: {}".format(model.loss, model.total_steps)) train_writer.add_scalar('loss', model.loss, model.total_steps) print("Iter time: ", ((time.time()-start_time)/model.total_steps) ) if model.total_steps in [10,30,50,100,1000,5000,10000] and False: # save models at these iters model.save_networks('model_iters_%s.pth' % model.total_steps) if epoch % opt.save_epoch_freq == 0: print('saving the model at the end of epoch %d' % (epoch)) model.save_networks( 'model_epoch_best.pth' ) model.save_networks( 'model_epoch_%s.pth' % epoch ) # Validation model.eval() ap, r_acc, f_acc, acc = validate(model.model, val_loader) val_writer.add_scalar('accuracy', acc, model.total_steps) val_writer.add_scalar('ap', ap, model.total_steps) print("(Val @ epoch {}) acc: {}; ap: {}".format(epoch, acc, ap)) early_stopping(acc, model) if early_stopping.early_stop: cont_train = model.adjust_learning_rate() if cont_train: print("Learning rate dropped by 10, continue training...") early_stopping = EarlyStopping(patience=opt.earlystop_epoch, delta=-0.002, verbose=True) else: print("Early stopping.") break model.train()