|  | import subprocess | 
					
						
						|  | import re | 
					
						
						|  | from typing import List, Tuple, Optional | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | command = ["python", "setup.py", "build_ext", "--inplace"] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | result = subprocess.run(command, capture_output=True, text=True) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | print("Output:\n", result.stdout) | 
					
						
						|  | print("Errors:\n", result.stderr) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if result.returncode == 0: | 
					
						
						|  | print("Command executed successfully.") | 
					
						
						|  | else: | 
					
						
						|  | print("Command failed with return code:", result.returncode) | 
					
						
						|  |  | 
					
						
						|  | import gradio as gr | 
					
						
						|  | from datetime import datetime | 
					
						
						|  | import os | 
					
						
						|  | os.environ["TORCH_CUDNN_SDPA_ENABLED"] = "1" | 
					
						
						|  | import torch | 
					
						
						|  | import numpy as np | 
					
						
						|  | import cv2 | 
					
						
						|  | import matplotlib.pyplot as plt | 
					
						
						|  | from PIL import Image, ImageFilter | 
					
						
						|  | from sam2.build_sam import build_sam2_video_predictor | 
					
						
						|  |  | 
					
						
						|  | from moviepy.editor import ImageSequenceClip | 
					
						
						|  |  | 
					
						
						|  | def get_video_fps(video_path): | 
					
						
						|  |  | 
					
						
						|  | cap = cv2.VideoCapture(video_path) | 
					
						
						|  |  | 
					
						
						|  | if not cap.isOpened(): | 
					
						
						|  | print("Error: Could not open video.") | 
					
						
						|  | return None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | fps = cap.get(cv2.CAP_PROP_FPS) | 
					
						
						|  |  | 
					
						
						|  | return fps | 
					
						
						|  |  | 
					
						
						|  | def clear_points(image): | 
					
						
						|  |  | 
					
						
						|  | return [ | 
					
						
						|  | image, | 
					
						
						|  | gr.State([]), | 
					
						
						|  | gr.State([]), | 
					
						
						|  | image, | 
					
						
						|  | gr.State() | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | def preprocess_video_in(video_path): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | unique_id = datetime.now().strftime('%Y%m%d%H%M%S') | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | extracted_frames_output_dir = f'frames_{unique_id}' | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | os.makedirs(extracted_frames_output_dir, exist_ok=True) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | cap = cv2.VideoCapture(video_path) | 
					
						
						|  |  | 
					
						
						|  | if not cap.isOpened(): | 
					
						
						|  | print("Error: Could not open video.") | 
					
						
						|  | return None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | fps = cap.get(cv2.CAP_PROP_FPS) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | max_frames = int(fps * 10) | 
					
						
						|  |  | 
					
						
						|  | frame_number = 0 | 
					
						
						|  | first_frame = None | 
					
						
						|  |  | 
					
						
						|  | while True: | 
					
						
						|  | ret, frame = cap.read() | 
					
						
						|  | if not ret or frame_number >= max_frames: | 
					
						
						|  | break | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | frame_filename = os.path.join(extracted_frames_output_dir, f'{frame_number:05d}.jpg') | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | cv2.imwrite(frame_filename, frame) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if frame_number == 0: | 
					
						
						|  | first_frame = frame_filename | 
					
						
						|  |  | 
					
						
						|  | frame_number += 1 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | cap.release() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | scanned_frames = [ | 
					
						
						|  | p for p in os.listdir(extracted_frames_output_dir) | 
					
						
						|  | if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG"] | 
					
						
						|  | ] | 
					
						
						|  | scanned_frames.sort(key=lambda p: int(os.path.splitext(p)[0])) | 
					
						
						|  | print(f"SCANNED_FRAMES: {scanned_frames}") | 
					
						
						|  |  | 
					
						
						|  | return [ | 
					
						
						|  | first_frame, | 
					
						
						|  | gr.State([]), | 
					
						
						|  | gr.State([]), | 
					
						
						|  | first_frame, | 
					
						
						|  | first_frame, | 
					
						
						|  | extracted_frames_output_dir, | 
					
						
						|  | scanned_frames, | 
					
						
						|  | None, | 
					
						
						|  | None, | 
					
						
						|  | gr.update(open=False) | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | def get_point(point_type, tracking_points, trackings_input_label, first_frame_path, evt: gr.SelectData): | 
					
						
						|  | print(f"You selected {evt.value} at {evt.index} from {evt.target}") | 
					
						
						|  |  | 
					
						
						|  | tracking_points.value.append(evt.index) | 
					
						
						|  | print(f"TRACKING POINT: {tracking_points.value}") | 
					
						
						|  |  | 
					
						
						|  | if point_type == "include": | 
					
						
						|  | trackings_input_label.value.append(1) | 
					
						
						|  | elif point_type == "exclude": | 
					
						
						|  | trackings_input_label.value.append(0) | 
					
						
						|  | print(f"TRACKING INPUT LABEL: {trackings_input_label.value}") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | transparent_background = Image.open(first_frame_path).convert('RGBA') | 
					
						
						|  | w, h = transparent_background.size | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | fraction = 0.02 | 
					
						
						|  | radius = int(fraction * min(w, h)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | transparent_layer = np.zeros((h, w, 4), dtype=np.uint8) | 
					
						
						|  |  | 
					
						
						|  | for index, track in enumerate(tracking_points.value): | 
					
						
						|  | if trackings_input_label.value[index] == 1: | 
					
						
						|  | cv2.circle(transparent_layer, track, radius, (0, 255, 0, 255), -1) | 
					
						
						|  | else: | 
					
						
						|  | cv2.circle(transparent_layer, track, radius, (255, 0, 0, 255), -1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | transparent_layer = Image.fromarray(transparent_layer, 'RGBA') | 
					
						
						|  | selected_point_map = Image.alpha_composite(transparent_background, transparent_layer) | 
					
						
						|  |  | 
					
						
						|  | return tracking_points, trackings_input_label, selected_point_map | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__() | 
					
						
						|  |  | 
					
						
						|  | if torch.cuda.get_device_properties(0).major >= 8: | 
					
						
						|  |  | 
					
						
						|  | torch.backends.cuda.matmul.allow_tf32 = True | 
					
						
						|  | torch.backends.cudnn.allow_tf32 = True | 
					
						
						|  |  | 
					
						
						|  | def show_mask(mask, ax, obj_id=None, random_color=False): | 
					
						
						|  | if random_color: | 
					
						
						|  | color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0) | 
					
						
						|  | else: | 
					
						
						|  | cmap = plt.get_cmap("tab10") | 
					
						
						|  | cmap_idx = 0 if obj_id is None else obj_id | 
					
						
						|  | color = np.array([*cmap(cmap_idx)[:3], 0.6]) | 
					
						
						|  | h, w = mask.shape[-2:] | 
					
						
						|  | mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) | 
					
						
						|  | ax.imshow(mask_image) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def show_points(coords, labels, ax, marker_size=200): | 
					
						
						|  | pos_points = coords[labels==1] | 
					
						
						|  | neg_points = coords[labels==0] | 
					
						
						|  | ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25) | 
					
						
						|  | ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25) | 
					
						
						|  |  | 
					
						
						|  | def show_box(box, ax): | 
					
						
						|  | x0, y0 = box[0], box[1] | 
					
						
						|  | w, h = box[2] - box[0], box[3] - box[1] | 
					
						
						|  | ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0, 0, 0, 0), lw=2)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def load_model(checkpoint): | 
					
						
						|  |  | 
					
						
						|  | if checkpoint == "tiny": | 
					
						
						|  | sam2_checkpoint = "./checkpoints/sam2_hiera_tiny.pt" | 
					
						
						|  | model_cfg = "sam2_hiera_t.yaml" | 
					
						
						|  | return [sam2_checkpoint, model_cfg] | 
					
						
						|  | elif checkpoint == "samll": | 
					
						
						|  | sam2_checkpoint = "./checkpoints/sam2_hiera_small.pt" | 
					
						
						|  | model_cfg = "sam2_hiera_s.yaml" | 
					
						
						|  | return [sam2_checkpoint, model_cfg] | 
					
						
						|  | elif checkpoint == "base-plus": | 
					
						
						|  | sam2_checkpoint = "./checkpoints/sam2_hiera_base_plus.pt" | 
					
						
						|  | model_cfg = "sam2_hiera_b+.yaml" | 
					
						
						|  | return [sam2_checkpoint, model_cfg] | 
					
						
						|  | elif checkpoint == "large": | 
					
						
						|  | sam2_checkpoint = "./checkpoints/sam2_hiera_large.pt" | 
					
						
						|  | model_cfg = "sam2_hiera_l.yaml" | 
					
						
						|  | return [sam2_checkpoint, model_cfg] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_mask_sam_process( | 
					
						
						|  | input_first_frame_image, | 
					
						
						|  | checkpoint, | 
					
						
						|  | tracking_points, | 
					
						
						|  | trackings_input_label, | 
					
						
						|  | video_frames_dir, | 
					
						
						|  | scanned_frames, | 
					
						
						|  | working_frame: str = None, | 
					
						
						|  | available_frames_to_check: List[str] = [], | 
					
						
						|  | progress=gr.Progress(track_tqdm=True) | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | print(f"USER CHOSEN CHECKPOINT: {checkpoint}") | 
					
						
						|  | sam2_checkpoint, model_cfg = load_model(checkpoint) | 
					
						
						|  | print("MODEL LOADED") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint) | 
					
						
						|  | print("PREDICTOR READY") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | print(f"STATE FRAME OUTPUT DIRECTORY: {video_frames_dir}") | 
					
						
						|  | video_dir = video_frames_dir | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | frame_names = scanned_frames | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | inference_state = predictor.init_state(video_path=video_dir) | 
					
						
						|  | print("NEW INFERENCE_STATE INITIATED") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if working_frame is None: | 
					
						
						|  | ann_frame_idx = 0 | 
					
						
						|  | working_frame = "frame_0.jpg" | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | match = re.search(r'frame_(\d+)', working_frame) | 
					
						
						|  | if match: | 
					
						
						|  |  | 
					
						
						|  | frame_number = int(match.group(1)) | 
					
						
						|  | ann_frame_idx = frame_number | 
					
						
						|  |  | 
					
						
						|  | print(f"NEW_WORKING_FRAME PATH: {working_frame}") | 
					
						
						|  |  | 
					
						
						|  | ann_obj_id = 1 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | points = np.array(tracking_points.value, dtype=np.float32) | 
					
						
						|  |  | 
					
						
						|  | labels = np.array(trackings_input_label.value, np.int32) | 
					
						
						|  | _, out_obj_ids, out_mask_logits = predictor.add_new_points( | 
					
						
						|  | inference_state=inference_state, | 
					
						
						|  | frame_idx=ann_frame_idx, | 
					
						
						|  | obj_id=ann_obj_id, | 
					
						
						|  | points=points, | 
					
						
						|  | labels=labels, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | plt.figure(figsize=(12, 8)) | 
					
						
						|  | plt.title(f"frame {ann_frame_idx}") | 
					
						
						|  | plt.imshow(Image.open(os.path.join(video_dir, frame_names[ann_frame_idx]))) | 
					
						
						|  | show_points(points, labels, plt.gca()) | 
					
						
						|  | show_mask((out_mask_logits[0] > 0.0).cpu().numpy(), plt.gca(), obj_id=out_obj_ids[0]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | first_frame_output_filename = "output_first_frame.jpg" | 
					
						
						|  | plt.savefig(first_frame_output_filename, format='jpg') | 
					
						
						|  | plt.close() | 
					
						
						|  | torch.cuda.empty_cache() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if working_frame not in available_frames_to_check: | 
					
						
						|  | available_frames_to_check.append(working_frame) | 
					
						
						|  |  | 
					
						
						|  | return "output_first_frame.jpg", frame_names, inference_state, gr.update(choices=available_frames_to_check.value, value=working_frame, visible=True) | 
					
						
						|  |  | 
					
						
						|  | def propagate_to_all(video_in, checkpoint, stored_inference_state, stored_frame_names, video_frames_dir, vis_frame_type, progress=gr.Progress(track_tqdm=True)): | 
					
						
						|  |  | 
					
						
						|  | sam2_checkpoint, model_cfg = load_model(checkpoint) | 
					
						
						|  | predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint) | 
					
						
						|  |  | 
					
						
						|  | inference_state = stored_inference_state | 
					
						
						|  | frame_names = stored_frame_names | 
					
						
						|  | video_dir = video_frames_dir | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | frames_output_dir = "frames_output_images" | 
					
						
						|  | os.makedirs(frames_output_dir, exist_ok=True) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | jpeg_images = [] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | video_segments = {} | 
					
						
						|  | for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(inference_state): | 
					
						
						|  | video_segments[out_frame_idx] = { | 
					
						
						|  | out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy() | 
					
						
						|  | for i, out_obj_id in enumerate(out_obj_ids) | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if vis_frame_type == "check": | 
					
						
						|  | vis_frame_stride = 15 | 
					
						
						|  | elif vis_frame_type == "render": | 
					
						
						|  | vis_frame_stride = 1 | 
					
						
						|  |  | 
					
						
						|  | plt.close("all") | 
					
						
						|  | for out_frame_idx in range(0, len(frame_names), vis_frame_stride): | 
					
						
						|  | plt.figure(figsize=(6, 4)) | 
					
						
						|  | plt.title(f"frame {out_frame_idx}") | 
					
						
						|  | plt.imshow(Image.open(os.path.join(video_dir, frame_names[out_frame_idx]))) | 
					
						
						|  | for out_obj_id, out_mask in video_segments[out_frame_idx].items(): | 
					
						
						|  | show_mask(out_mask, plt.gca(), obj_id=out_obj_id) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | output_filename = os.path.join(frames_output_dir, f"frame_{out_frame_idx}.jpg") | 
					
						
						|  | plt.savefig(output_filename, format='jpg') | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | plt.close() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | jpeg_images.append(output_filename) | 
					
						
						|  |  | 
					
						
						|  | torch.cuda.empty_cache() | 
					
						
						|  | print(f"JPEG_IMAGES: {jpeg_images}") | 
					
						
						|  |  | 
					
						
						|  | if vis_frame_type == "check": | 
					
						
						|  | return gr.update(value=jpeg_images), gr.update(value=None), gr.update(choices=jpeg_images, value=None, visible=True) | 
					
						
						|  | elif vis_frame_type == "render": | 
					
						
						|  |  | 
					
						
						|  | original_fps = get_video_fps(video_in) | 
					
						
						|  | fps = original_fps | 
					
						
						|  | total_frames = len(jpeg_images) | 
					
						
						|  | clip = ImageSequenceClip(jpeg_images, fps=fps) | 
					
						
						|  |  | 
					
						
						|  | final_vid_output_path = "output_video.mp4" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | clip.write_videofile( | 
					
						
						|  | final_vid_output_path, | 
					
						
						|  | codec='libx264' | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return gr.update(value=None), gr.update(value=final_vid_output_path), None | 
					
						
						|  |  | 
					
						
						|  | def update_ui(vis_frame_type): | 
					
						
						|  | if vis_frame_type == "check": | 
					
						
						|  | return gr.update(visible=True), gr.update(visible=False) | 
					
						
						|  | elif vis_frame_type == "render": | 
					
						
						|  | return gr.update(visible=False), gr.update(visible=True) | 
					
						
						|  |  | 
					
						
						|  | def switch_working_frame(working_frame, scanned_frames, video_frames_dir): | 
					
						
						|  | new_working_frame = None | 
					
						
						|  | if working_frame == None: | 
					
						
						|  | new_working_frame = os.path.join(video_frames_dir, scanned_frames[0]) | 
					
						
						|  | return new_working_frame, gr.State([]), gr.State([]), new_working_frame, new_working_frame, new_working_frame | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | match = re.search(r'frame_(\d+)', working_frame) | 
					
						
						|  | if match: | 
					
						
						|  |  | 
					
						
						|  | frame_number = int(match.group(1)) | 
					
						
						|  | ann_frame_idx = frame_number | 
					
						
						|  | new_working_frame = os.path.join(video_frames_dir, scanned_frames[ann_frame_idx]) | 
					
						
						|  | return new_working_frame, gr.State([]), gr.State([]), new_working_frame, new_working_frame, new_working_frame | 
					
						
						|  |  | 
					
						
						|  | with gr.Blocks() as demo: | 
					
						
						|  | first_frame_path = gr.State() | 
					
						
						|  | tracking_points = gr.State([]) | 
					
						
						|  | trackings_input_label = gr.State([]) | 
					
						
						|  | video_frames_dir = gr.State() | 
					
						
						|  | scanned_frames = gr.State() | 
					
						
						|  | stored_inference_state = gr.State() | 
					
						
						|  | stored_frame_names = gr.State() | 
					
						
						|  | available_frames_to_check = gr.State([]) | 
					
						
						|  | with gr.Column(): | 
					
						
						|  | gr.Markdown("# SAM2 Video Predictor") | 
					
						
						|  | gr.Markdown("This is a simple demo for video segmentation with SAM2.") | 
					
						
						|  | gr.Markdown("""Instructions: | 
					
						
						|  |  | 
					
						
						|  | 1. Upload your video | 
					
						
						|  | 2. With 'include' point type selected, Click on the object to mask on first frame | 
					
						
						|  | 3. Switch to 'exclude' point type if you want to specify an area to avoid | 
					
						
						|  | 4. Submit ! | 
					
						
						|  | """) | 
					
						
						|  | with gr.Row(): | 
					
						
						|  |  | 
					
						
						|  | with gr.Column(): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | point_type = gr.Radio(label="point type", choices=["include", "exclude"], value="include", scale=2) | 
					
						
						|  | clear_points_btn = gr.Button("Clear Points", scale=1) | 
					
						
						|  |  | 
					
						
						|  | input_first_frame_image = gr.Image(label="input image", interactive=False, type="filepath", visible=False) | 
					
						
						|  |  | 
					
						
						|  | points_map = gr.Image( | 
					
						
						|  | label="Point n Click map", | 
					
						
						|  | type="filepath", | 
					
						
						|  | interactive=False | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | checkpoint = gr.Dropdown(label="Checkpoint", choices=["tiny", "small", "base-plus", "large"], value="tiny") | 
					
						
						|  | submit_btn = gr.Button("Submit", size="lg") | 
					
						
						|  |  | 
					
						
						|  | with gr.Accordion("Your video IN", open=True) as video_in_drawer: | 
					
						
						|  | video_in = gr.Video(label="Video IN") | 
					
						
						|  |  | 
					
						
						|  | with gr.Column(): | 
					
						
						|  |  | 
					
						
						|  | working_frame = gr.Dropdown(label="working frame ID", choices=[""], value=None, visible=False, allow_custom_value=False, interactive=True) | 
					
						
						|  | output_result = gr.Image(label="current working mask ref") | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | vis_frame_type = gr.Radio(label="Propagation level", choices=["check", "render"], value="check", scale=2) | 
					
						
						|  | propagate_btn = gr.Button("Propagate", scale=1) | 
					
						
						|  | output_propagated = gr.Gallery(label="Propagated Mask samples gallery", visible=False) | 
					
						
						|  | output_video = gr.Video(visible=False) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | video_in.upload( | 
					
						
						|  | fn = preprocess_video_in, | 
					
						
						|  | inputs = [video_in], | 
					
						
						|  | outputs = [ | 
					
						
						|  | first_frame_path, | 
					
						
						|  | tracking_points, | 
					
						
						|  | trackings_input_label, | 
					
						
						|  | input_first_frame_image, | 
					
						
						|  | points_map, | 
					
						
						|  | video_frames_dir, | 
					
						
						|  | scanned_frames, | 
					
						
						|  | stored_inference_state, | 
					
						
						|  | stored_frame_names, | 
					
						
						|  | video_in_drawer, | 
					
						
						|  | ], | 
					
						
						|  | queue = False | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | points_map.select( | 
					
						
						|  | fn = get_point, | 
					
						
						|  | inputs = [ | 
					
						
						|  | point_type, | 
					
						
						|  | tracking_points, | 
					
						
						|  | trackings_input_label, | 
					
						
						|  | first_frame_path, | 
					
						
						|  | ], | 
					
						
						|  | outputs = [ | 
					
						
						|  | tracking_points, | 
					
						
						|  | trackings_input_label, | 
					
						
						|  | points_map, | 
					
						
						|  | ], | 
					
						
						|  | queue = False | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | clear_points_btn.click( | 
					
						
						|  | fn = clear_points, | 
					
						
						|  | inputs = input_first_frame_image, | 
					
						
						|  | outputs = [ | 
					
						
						|  | first_frame_path, | 
					
						
						|  | tracking_points, | 
					
						
						|  | trackings_input_label, | 
					
						
						|  | points_map, | 
					
						
						|  | stored_inference_state, | 
					
						
						|  | ], | 
					
						
						|  | queue=False | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  | working_frame.change( | 
					
						
						|  | fn = switch_working_frame, | 
					
						
						|  | inputs = [working_frame, scanned_frames, video_frames_dir], | 
					
						
						|  | outputs = [first_frame_path, tracking_points, trackings_input_label, input_first_frame_image, points_map, working_frame], | 
					
						
						|  | queue=False | 
					
						
						|  | ) | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | submit_btn.click( | 
					
						
						|  | fn = get_mask_sam_process, | 
					
						
						|  | inputs = [ | 
					
						
						|  | input_first_frame_image, | 
					
						
						|  | checkpoint, | 
					
						
						|  | tracking_points, | 
					
						
						|  | trackings_input_label, | 
					
						
						|  | video_frames_dir, | 
					
						
						|  | scanned_frames, | 
					
						
						|  | working_frame, | 
					
						
						|  | available_frames_to_check, | 
					
						
						|  | ], | 
					
						
						|  | outputs = [ | 
					
						
						|  | output_result, | 
					
						
						|  | stored_frame_names, | 
					
						
						|  | stored_inference_state, | 
					
						
						|  | working_frame, | 
					
						
						|  | ] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | propagate_btn.click( | 
					
						
						|  | fn = update_ui, | 
					
						
						|  | inputs = [vis_frame_type], | 
					
						
						|  | outputs = [output_propagated, output_video], | 
					
						
						|  | queue=False | 
					
						
						|  | ).then( | 
					
						
						|  | fn = propagate_to_all, | 
					
						
						|  | inputs = [video_in, checkpoint, stored_inference_state, stored_frame_names, video_frames_dir, vis_frame_type], | 
					
						
						|  | outputs = [output_propagated, output_video, working_frame] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | demo.launch(show_api=False, show_error=True) |