DavidCombei commited on
Commit
0f8a520
·
verified ·
1 Parent(s): cebb599

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -93
app.py DELETED
@@ -1,93 +0,0 @@
1
- import joblib
2
- from transformers import AutoFeatureExtractor, Wav2Vec2Model
3
- import torch
4
- import librosa
5
- import numpy as np
6
- from sklearn.linear_model import LogisticRegression
7
- import gradio as gr
8
- import os
9
-
10
- device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
11
-
12
- class CustomWav2Vec2Model(Wav2Vec2Model):
13
- def __init__(self, config):
14
- super().__init__(config)
15
- self.encoder.layers = self.encoder.layers[:9]
16
-
17
- truncated_model = CustomWav2Vec2Model.from_pretrained("facebook/wav2vec2-xls-r-2b")
18
-
19
- class HuggingFaceFeatureExtractor:
20
- def __init__(self, model, feature_extractor_name):
21
- self.device = device
22
- self.feature_extractor = AutoFeatureExtractor.from_pretrained(feature_extractor_name)
23
- self.model = model
24
- self.model.eval()
25
- self.model.to(self.device)
26
-
27
- def __call__(self, audio, sr):
28
- inputs = self.feature_extractor(
29
- audio,
30
- sampling_rate=sr,
31
- return_tensors="pt",
32
- padding=True,
33
- )
34
- inputs = {k: v.to(self.device) for k, v in inputs.items()}
35
- with torch.no_grad():
36
- outputs = self.model(**inputs, output_hidden_states=True)
37
- return outputs.hidden_states[9]
38
-
39
- FEATURE_EXTRACTOR = HuggingFaceFeatureExtractor(truncated_model, "facebook/wav2vec2-xls-r-2b")
40
- classifier,scaler, thresh = joblib.load('logreg_margin_pruning_ALL_with_scaler+threshold.joblib')
41
-
42
- def segment_audio(audio, sr, segment_duration):
43
- segment_samples = int(segment_duration * sr)
44
- total_samples = len(audio)
45
- segments = [audio[i:i + segment_samples] for i in range(0, total_samples, segment_samples)]
46
- return segments
47
-
48
- def process_audio(input_data, segment_duration=10):
49
- audio, sr = librosa.load(input_data, sr=16000)
50
- if len(audio.shape) > 1:
51
- audio = audio[0]
52
- segments = segment_audio(audio, sr, segment_duration)
53
- segment_predictions = []
54
- output_lines = []
55
- eer_threshold = thresh - 5e-3 # small margin error due to feature extractor space differences
56
- for idx, segment in enumerate(segments):
57
- features = FEATURE_EXTRACTOR(segment, sr)
58
- features_avg = torch.mean(features, dim=1).cpu().numpy()
59
- features_avg = features_avg.reshape(1, -1)
60
- decision_score = classifier.decision_function(features_avg)
61
- decision_score_scaled = scaler.transform(decision_score.reshape(-1, 1)).flatten()
62
- pred = 1 if decision_score_scaled >= eer_threshold else 0
63
- if pred == 1:
64
- confidence_percentage = ((decision_score_scaled - eer_threshold) / (1 - eer_threshold)) * 100
65
- else:
66
- confidence_percentage = ((eer_threshold - decision_score_scaled) / eer_threshold) * 100
67
-
68
- #with the above logic I got some scores out of the range [0-100] for the confidence score on some unseen data due to the logic, brute fix :)
69
- confidence_percentage = max(0, min(confidence_percentage, 100))
70
-
71
- segment_predictions.append(pred)
72
- line = f"Segment {idx + 1}: {'Real' if pred == 1 else 'Fake'} (Confidence: {round(confidence_percentage, 2)}%)"
73
- output_lines.append(line)
74
- overall_prediction = 1 if sum(segment_predictions) > (len(segment_predictions) / 2) else 0
75
- overall_line = f"Overall Prediction: {'Real' if overall_prediction == 1 else 'Fake'}"
76
- output_str = overall_line + "\n" + "\n".join(output_lines)
77
- return output_str
78
-
79
- def gradio_interface(audio):
80
- if audio:
81
- return process_audio(audio)
82
- else:
83
- return "please upload an audio file"
84
-
85
- interface = gr.Interface(
86
- fn=gradio_interface,
87
- inputs=[gr.Audio(type="filepath", label="Upload Audio")],
88
- outputs="text",
89
- title="SOL2 Audio Deepfake Detection Demo",
90
- description="Upload an audio file to check if it's AI-generated",
91
- )
92
-
93
- interface.launch(share=True)