Spaces:
Runtime error
Runtime error
import gradio as gr | |
from fastai.vision.all import * | |
from PIL import Image | |
# | |
#learn = load_learner('export.pkl') | |
learn = torch.load('digit_classifier.pth') | |
learn.eval() #switch to eval mode | |
labels = [str(x) for x in range(10)] | |
#Define function to reduce image of arbitrary size to 8x8 per model requirements. | |
def reduce_image_count(image): | |
output_size = (8, 8) | |
block_size = (image.shape[0] // output_size[0], image.shape[1] // output_size[1]) | |
output = np.zeros(output_size) | |
for i in range(output_size[0]): | |
for j in range(output_size[1]): | |
block = image[i*block_size[0]:(i+1)*block_size[0], j*block_size[1]:(j+1)*block_size[1]] | |
count = np.count_nonzero(block) | |
output[i, j] = 16 - ((count / (block_size[0] * block_size[1])) * 16) | |
return output | |
def predict(img): | |
#First take input and reduce it to 8x8 px as the dataset was | |
pil_image = Image.open(img) #get image | |
gray_img = pil_image.convert('L')#grayscale | |
pic = np.array(gray_img) #convert to array | |
inp_img=reduce_image_count(pic)#Reduce image to required input size | |
otpt=F.softmax(learn.forward(inp_img.view(-1,64))) | |
#pred,pred_idx,probs = learn.predict(img) | |
return {labels[i]: float(otpt[0].data[i]) for i in range(len(labels)),'image': inp_img} | |
gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(512, 512)), outputs=[gr.outputs.Label(num_top_classes=3), gr.outputs.Image()]).launch(share=True) |