DavidD003's picture
Update app.py
33343db
raw
history blame
1.48 kB
import gradio as gr
from fastai.vision.all import *
from PIL import Image
#
#learn = load_learner('export.pkl')
learn = torch.load('digit_classifier.pth')
learn.eval() #switch to eval mode
labels = [str(x) for x in range(10)]
#Define function to reduce image of arbitrary size to 8x8 per model requirements.
def reduce_image_count(image):
output_size = (8, 8)
block_size = (image.shape[0] // output_size[0], image.shape[1] // output_size[1])
output = np.zeros(output_size)
for i in range(output_size[0]):
for j in range(output_size[1]):
block = image[i*block_size[0]:(i+1)*block_size[0], j*block_size[1]:(j+1)*block_size[1]]
count = np.count_nonzero(block)
output[i, j] = 16 - ((count / (block_size[0] * block_size[1])) * 16)
return output
def predict(img):
#First take input and reduce it to 8x8 px as the dataset was
pil_image = Image.open(img) #get image
gray_img = pil_image.convert('L')#grayscale
pic = np.array(gray_img) #convert to array
inp_img=reduce_image_count(pic)#Reduce image to required input size
otpt=F.softmax(learn.forward(inp_img.view(-1,64)))
#pred,pred_idx,probs = learn.predict(img)
return {labels[i]: float(otpt[0].data[i]) for i in range(len(labels)),'image': inp_img}
gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(512, 512)), outputs=[gr.outputs.Label(num_top_classes=3), gr.outputs.Image()]).launch(share=True)