import gradio as gr from fastai.vision.all import * from PIL import Image # #learn = load_learner('export.pkl') learn = torch.load('digit_classifier.pth') labels = [str(x) for x in range(10)] def predict(img): #First take input and reduce it to 8x8 px as the dataset was img = PILImage.create(img) pred,pred_idx,probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(512, 512)), outputs=gr.outputs.Label(num_top_classes=3)).launch(share=True)