Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,29 +4,27 @@ from PIL import Image
|
|
| 4 |
import gradio as gr
|
| 5 |
import os
|
| 6 |
|
| 7 |
-
#
|
| 8 |
device = torch.device('cpu')
|
| 9 |
|
| 10 |
-
#
|
| 11 |
model = models.resnet50(weights=None)
|
| 12 |
|
| 13 |
-
#
|
| 14 |
model.fc = torch.nn.Linear(2048, 37)
|
| 15 |
|
| 16 |
-
#
|
| 17 |
model.load_state_dict(torch.load('./resnet50_model_weights.pth', map_location=device))
|
| 18 |
|
| 19 |
-
# 設置模型為評估模式
|
| 20 |
model.eval()
|
| 21 |
|
| 22 |
-
# 定義影像預處理
|
| 23 |
transform = transforms.Compose([
|
| 24 |
transforms.Resize((224, 224)),
|
| 25 |
transforms.ToTensor(),
|
| 26 |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
| 27 |
])
|
| 28 |
|
| 29 |
-
|
| 30 |
class_names = ['Abyssinian (阿比西尼亞貓)', 'American Bulldog (美國鬥牛犬)', 'American Pit Bull Terrier (美國比特鬥牛梗)',
|
| 31 |
'Basset Hound (巴吉度獵犬)', 'Beagle (米格魯)', 'Bengal (孟加拉貓)', 'Birman (緬甸貓)', 'Bombay (孟買貓)',
|
| 32 |
'Boxer (拳師犬)', 'British Shorthair (英國短毛貓)', 'Chihuahua (吉娃娃)', 'Egyptian Mau (埃及貓)',
|
|
@@ -38,7 +36,7 @@ class_names = ['Abyssinian (阿比西尼亞貓)', 'American Bulldog (美國鬥
|
|
| 38 |
'Siamese (暹羅貓)', 'Sphynx (無毛貓)', 'Staffordshire Bull Terrier (史塔福郡鬥牛犬)',
|
| 39 |
'Wheaten Terrier (小麥色梗)', 'Yorkshire Terrier (約克夏犬)']
|
| 40 |
|
| 41 |
-
#
|
| 42 |
def classify_image(image):
|
| 43 |
image = transform(image).unsqueeze(0).to(device)
|
| 44 |
with torch.no_grad():
|
|
@@ -48,7 +46,6 @@ def classify_image(image):
|
|
| 48 |
predictions = [(class_names[idx], prob.item()) for idx, prob in zip(indices[0], probabilities[0])]
|
| 49 |
return {class_name: f"{prob:.2f}" for class_name, prob in predictions}
|
| 50 |
|
| 51 |
-
# 設定 examples 路徑
|
| 52 |
examples_path = './examples'
|
| 53 |
|
| 54 |
if os.path.exists(examples_path):
|
|
@@ -56,10 +53,9 @@ if os.path.exists(examples_path):
|
|
| 56 |
else:
|
| 57 |
print(f"[ERROR] Examples folder not found at {examples_path}")
|
| 58 |
|
| 59 |
-
# 設定範例圖片
|
| 60 |
examples = [[examples_path + "/" + img] for img in os.listdir(examples_path)]
|
| 61 |
|
| 62 |
-
#
|
| 63 |
breed_list_text = """
|
| 64 |
### Recognizable Breeds:
|
| 65 |
|
|
@@ -73,14 +69,14 @@ breed_list_text = """
|
|
| 73 |
"""
|
| 74 |
|
| 75 |
|
| 76 |
-
# Gradio
|
| 77 |
demo = gr.Interface(
|
| 78 |
fn=classify_image,
|
| 79 |
-
inputs=gr.Image(type="pil"),
|
| 80 |
outputs=[gr.Label(num_top_classes=3, label="Top 3 Predictions")],
|
| 81 |
examples=examples,
|
| 82 |
title='Oxford Pet 🐈🐕',
|
| 83 |
-
description=f'A ResNet50-based model for classifying 37 different pet breeds.\n\n{breed_list_text}',
|
| 84 |
article='[Oxford Project](https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/The%20Oxford-IIIT%20Pet%20Project)'
|
| 85 |
)
|
| 86 |
|
|
|
|
| 4 |
import gradio as gr
|
| 5 |
import os
|
| 6 |
|
| 7 |
+
# Use CPU
|
| 8 |
device = torch.device('cpu')
|
| 9 |
|
| 10 |
+
# Define ResNet-50 Architecture
|
| 11 |
model = models.resnet50(weights=None)
|
| 12 |
|
| 13 |
+
# Chanege model ouputs to fit this data (num_classes=37)
|
| 14 |
model.fc = torch.nn.Linear(2048, 37)
|
| 15 |
|
| 16 |
+
# Load model's weight
|
| 17 |
model.load_state_dict(torch.load('./resnet50_model_weights.pth', map_location=device))
|
| 18 |
|
|
|
|
| 19 |
model.eval()
|
| 20 |
|
|
|
|
| 21 |
transform = transforms.Compose([
|
| 22 |
transforms.Resize((224, 224)),
|
| 23 |
transforms.ToTensor(),
|
| 24 |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
| 25 |
])
|
| 26 |
|
| 27 |
+
|
| 28 |
class_names = ['Abyssinian (阿比西尼亞貓)', 'American Bulldog (美國鬥牛犬)', 'American Pit Bull Terrier (美國比特鬥牛梗)',
|
| 29 |
'Basset Hound (巴吉度獵犬)', 'Beagle (米格魯)', 'Bengal (孟加拉貓)', 'Birman (緬甸貓)', 'Bombay (孟買貓)',
|
| 30 |
'Boxer (拳師犬)', 'British Shorthair (英國短毛貓)', 'Chihuahua (吉娃娃)', 'Egyptian Mau (埃及貓)',
|
|
|
|
| 36 |
'Siamese (暹羅貓)', 'Sphynx (無毛貓)', 'Staffordshire Bull Terrier (史塔福郡鬥牛犬)',
|
| 37 |
'Wheaten Terrier (小麥色梗)', 'Yorkshire Terrier (約克夏犬)']
|
| 38 |
|
| 39 |
+
# define predict images function
|
| 40 |
def classify_image(image):
|
| 41 |
image = transform(image).unsqueeze(0).to(device)
|
| 42 |
with torch.no_grad():
|
|
|
|
| 46 |
predictions = [(class_names[idx], prob.item()) for idx, prob in zip(indices[0], probabilities[0])]
|
| 47 |
return {class_name: f"{prob:.2f}" for class_name, prob in predictions}
|
| 48 |
|
|
|
|
| 49 |
examples_path = './examples'
|
| 50 |
|
| 51 |
if os.path.exists(examples_path):
|
|
|
|
| 53 |
else:
|
| 54 |
print(f"[ERROR] Examples folder not found at {examples_path}")
|
| 55 |
|
|
|
|
| 56 |
examples = [[examples_path + "/" + img] for img in os.listdir(examples_path)]
|
| 57 |
|
| 58 |
+
# Create the reference list
|
| 59 |
breed_list_text = """
|
| 60 |
### Recognizable Breeds:
|
| 61 |
|
|
|
|
| 69 |
"""
|
| 70 |
|
| 71 |
|
| 72 |
+
# Gradio Interface
|
| 73 |
demo = gr.Interface(
|
| 74 |
fn=classify_image,
|
| 75 |
+
inputs=gr.Image(type="pil"),
|
| 76 |
outputs=[gr.Label(num_top_classes=3, label="Top 3 Predictions")],
|
| 77 |
examples=examples,
|
| 78 |
title='Oxford Pet 🐈🐕',
|
| 79 |
+
description=f'A ResNet50-based model for classifying 37 different pet breeds.\n\n{breed_list_text}',
|
| 80 |
article='[Oxford Project](https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/The%20Oxford-IIIT%20Pet%20Project)'
|
| 81 |
)
|
| 82 |
|