Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -251,33 +251,45 @@ def get_akc_breeds_link():
|
|
| 251 |
# iface.launch()
|
| 252 |
|
| 253 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 254 |
def detect_dogs(image):
|
| 255 |
-
# 使用 YOLO 模型進行偵測
|
| 256 |
results = model_yolo(image)
|
| 257 |
-
|
| 258 |
-
# 打印 YOLO 偵測結果
|
| 259 |
-
print(f"YOLO detection results: {results}")
|
| 260 |
-
|
| 261 |
dogs = []
|
| 262 |
for result in results:
|
| 263 |
-
# 打印每個結果
|
| 264 |
-
print(f"Result: {result}")
|
| 265 |
for box in result.boxes:
|
| 266 |
-
#
|
| 267 |
-
print(f"Detected class: {box.cls}, Confidence: {box.conf}, Box coordinates: {box.xyxy}")
|
| 268 |
-
|
| 269 |
-
if box.cls == 16: # COCO 資料集中的狗類別是 16
|
| 270 |
xyxy = box.xyxy[0].tolist()
|
| 271 |
confidence = box.conf.item()
|
| 272 |
-
|
| 273 |
-
# 確認圖片裁切過程正確
|
| 274 |
-
print(f"Cropping image at coordinates: {xyxy}")
|
| 275 |
-
|
| 276 |
cropped_image = image.crop((xyxy[0], xyxy[1], xyxy[2], xyxy[3]))
|
| 277 |
dogs.append((cropped_image, confidence, xyxy))
|
| 278 |
-
|
| 279 |
-
# 最後打印偵測到的狗的數量
|
| 280 |
-
print(f"Number of dogs detected: {len(dogs)}")
|
| 281 |
return dogs
|
| 282 |
|
| 283 |
|
|
@@ -301,6 +313,17 @@ def predict(image):
|
|
| 301 |
if isinstance(image, np.ndarray):
|
| 302 |
image = Image.fromarray(image)
|
| 303 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 304 |
dogs = detect_dogs(image)
|
| 305 |
if len(dogs) == 0:
|
| 306 |
return "No dogs detected or the image is unclear. Please upload a clearer image of a dog.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
|
@@ -311,7 +334,7 @@ def predict(image):
|
|
| 311 |
draw = ImageDraw.Draw(annotated_image)
|
| 312 |
|
| 313 |
for i, (cropped_image, _, box) in enumerate(dogs):
|
| 314 |
-
top1_prob, topk_breeds, topk_probs_percent =
|
| 315 |
|
| 316 |
draw.rectangle(box, outline="red", width=3)
|
| 317 |
draw.text((box[0], box[1]), f"Dog {i+1}", fill="red")
|
|
@@ -319,7 +342,7 @@ def predict(image):
|
|
| 319 |
if top1_prob >= 0.5:
|
| 320 |
breed = topk_breeds[0]
|
| 321 |
description = get_dog_description(breed)
|
| 322 |
-
explanations.append(f"Dog {i+1}
|
| 323 |
elif 0.2 <= top1_prob < 0.5:
|
| 324 |
explanation = (
|
| 325 |
f"Dog {i+1}: Detected with moderate confidence. Here are the top 3 possible breeds:\n"
|
|
@@ -338,22 +361,6 @@ def predict(image):
|
|
| 338 |
except Exception as e:
|
| 339 |
return f"An error occurred: {e}", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
| 340 |
|
| 341 |
-
def format_description(description, breed):
|
| 342 |
-
if isinstance(description, dict):
|
| 343 |
-
formatted_description = "\n".join([f"**{key}**: {value}" for key, value in description.items()])
|
| 344 |
-
else:
|
| 345 |
-
formatted_description = description
|
| 346 |
-
|
| 347 |
-
akc_link = get_akc_breeds_link()
|
| 348 |
-
formatted_description += f"\n\n**Want to learn more about dog breeds?** [Visit the AKC dog breeds page]({akc_link}) and search for {breed} to find detailed information."
|
| 349 |
-
|
| 350 |
-
disclaimer = ("\n\n*Disclaimer: The external link provided leads to the American Kennel Club (AKC) dog breeds page. "
|
| 351 |
-
"You may need to search for the specific breed on that page. "
|
| 352 |
-
"I am not responsible for the content on external sites. "
|
| 353 |
-
"Please refer to the AKC's terms of use and privacy policy.*")
|
| 354 |
-
formatted_description += disclaimer
|
| 355 |
-
|
| 356 |
-
return formatted_description
|
| 357 |
|
| 358 |
def show_details(breed):
|
| 359 |
breed_name = breed.split("More about ")[-1]
|
|
|
|
| 251 |
# iface.launch()
|
| 252 |
|
| 253 |
|
| 254 |
+
def format_description(description, breed):
|
| 255 |
+
if isinstance(description, dict):
|
| 256 |
+
formatted_description = "\n".join([f"**{key}**: {value}" for key, value in description.items()])
|
| 257 |
+
else:
|
| 258 |
+
formatted_description = description
|
| 259 |
+
|
| 260 |
+
akc_link = get_akc_breeds_link()
|
| 261 |
+
formatted_description += f"\n\n**Want to learn more about dog breeds?**\n[Visit the AKC dog breeds page]({akc_link}) and search for {breed} to find detailed information."
|
| 262 |
+
|
| 263 |
+
disclaimer = ("\n\n*Disclaimer: The external link provided leads to the American Kennel Club (AKC) dog breeds page. "
|
| 264 |
+
"You may need to search for the specific breed on that page. "
|
| 265 |
+
"I am not responsible for the content on external sites. "
|
| 266 |
+
"Please refer to the AKC's terms of use and privacy policy.*")
|
| 267 |
+
formatted_description += disclaimer
|
| 268 |
+
|
| 269 |
+
return formatted_description
|
| 270 |
+
|
| 271 |
+
def predict_single_dog(image):
|
| 272 |
+
image_tensor = preprocess_image(image)
|
| 273 |
+
with torch.no_grad():
|
| 274 |
+
output = model(image_tensor)
|
| 275 |
+
logits = output[0] if isinstance(output, tuple) else output
|
| 276 |
+
probabilities = F.softmax(logits, dim=1)
|
| 277 |
+
topk_probs, topk_indices = torch.topk(probabilities, k=3)
|
| 278 |
+
top1_prob = topk_probs[0][0].item()
|
| 279 |
+
topk_breeds = [dog_breeds[idx.item()] for idx in topk_indices[0]]
|
| 280 |
+
topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
|
| 281 |
+
return top1_prob, topk_breeds, topk_probs_percent
|
| 282 |
+
|
| 283 |
def detect_dogs(image):
|
|
|
|
| 284 |
results = model_yolo(image)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 285 |
dogs = []
|
| 286 |
for result in results:
|
|
|
|
|
|
|
| 287 |
for box in result.boxes:
|
| 288 |
+
if box.cls == 16: # COCO dataset class for dog is 16
|
|
|
|
|
|
|
|
|
|
| 289 |
xyxy = box.xyxy[0].tolist()
|
| 290 |
confidence = box.conf.item()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 291 |
cropped_image = image.crop((xyxy[0], xyxy[1], xyxy[2], xyxy[3]))
|
| 292 |
dogs.append((cropped_image, confidence, xyxy))
|
|
|
|
|
|
|
|
|
|
| 293 |
return dogs
|
| 294 |
|
| 295 |
|
|
|
|
| 313 |
if isinstance(image, np.ndarray):
|
| 314 |
image = Image.fromarray(image)
|
| 315 |
|
| 316 |
+
# First, try single dog prediction
|
| 317 |
+
top1_prob, topk_breeds, topk_probs_percent = predict_single_dog(image)
|
| 318 |
+
|
| 319 |
+
if top1_prob >= 0.5:
|
| 320 |
+
# If confident enough, use single dog prediction
|
| 321 |
+
breed = topk_breeds[0]
|
| 322 |
+
description = get_dog_description(breed)
|
| 323 |
+
formatted_description = format_description(description, breed)
|
| 324 |
+
return formatted_description, image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
| 325 |
+
|
| 326 |
+
# If not confident, use YOLO for multiple dog detection
|
| 327 |
dogs = detect_dogs(image)
|
| 328 |
if len(dogs) == 0:
|
| 329 |
return "No dogs detected or the image is unclear. Please upload a clearer image of a dog.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
|
|
|
| 334 |
draw = ImageDraw.Draw(annotated_image)
|
| 335 |
|
| 336 |
for i, (cropped_image, _, box) in enumerate(dogs):
|
| 337 |
+
top1_prob, topk_breeds, topk_probs_percent = predict_single_dog(cropped_image)
|
| 338 |
|
| 339 |
draw.rectangle(box, outline="red", width=3)
|
| 340 |
draw.text((box[0], box[1]), f"Dog {i+1}", fill="red")
|
|
|
|
| 342 |
if top1_prob >= 0.5:
|
| 343 |
breed = topk_breeds[0]
|
| 344 |
description = get_dog_description(breed)
|
| 345 |
+
explanations.append(f"Dog {i+1}:\n**Breed**: {breed}\n{format_description(description, breed)}")
|
| 346 |
elif 0.2 <= top1_prob < 0.5:
|
| 347 |
explanation = (
|
| 348 |
f"Dog {i+1}: Detected with moderate confidence. Here are the top 3 possible breeds:\n"
|
|
|
|
| 361 |
except Exception as e:
|
| 362 |
return f"An error occurred: {e}", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
| 363 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 364 |
|
| 365 |
def show_details(breed):
|
| 366 |
breed_name = breed.split("More about ")[-1]
|