Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -301,120 +301,9 @@ def _detect_multiple_dogs(image, conf_threshold):
|
|
| 301 |
return dogs
|
| 302 |
|
| 303 |
|
| 304 |
-
# async def predict(image):
|
| 305 |
-
# if image is None:
|
| 306 |
-
# return "Please upload an image to start.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
| 307 |
-
|
| 308 |
-
# try:
|
| 309 |
-
# if isinstance(image, np.ndarray):
|
| 310 |
-
# image = Image.fromarray(image)
|
| 311 |
-
|
| 312 |
-
# # 嘗試檢測多隻狗
|
| 313 |
-
# dogs = await detect_multiple_dogs(image)
|
| 314 |
-
# if len(dogs) == 0:
|
| 315 |
-
# # 單狗情境
|
| 316 |
-
# top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
|
| 317 |
-
# if top1_prob < 0.2:
|
| 318 |
-
# return "The image is unclear or the breed is not in the dataset. Please upload a clearer image of a dog.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
| 319 |
-
|
| 320 |
-
# breed = topk_breeds[0]
|
| 321 |
-
# description = get_dog_description(breed)
|
| 322 |
-
|
| 323 |
-
# if top1_prob >= 0.5:
|
| 324 |
-
# formatted_description = format_description(description, breed)
|
| 325 |
-
# return formatted_description, image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
| 326 |
-
# else:
|
| 327 |
-
# explanation = (
|
| 328 |
-
# f"The model couldn't confidently identify the breed. Here are the top 3 possible breeds:\n\n"
|
| 329 |
-
# f"1. **{topk_breeds[0]}** ({topk_probs_percent[0]} confidence)\n"
|
| 330 |
-
# f"2. **{topk_breeds[1]}** ({topk_probs_percent[1]} confidence)\n"
|
| 331 |
-
# f"3. **{topk_breeds[2]}** ({topk_probs_percent[2]} confidence)\n\n"
|
| 332 |
-
# "Click on a button to view more information about the breed."
|
| 333 |
-
# )
|
| 334 |
-
# return explanation, image, gr.update(visible=True, value=f"More about {topk_breeds[0]}"), gr.update(visible=True, value=f"More about {topk_breeds[1]}"), gr.update(visible=True, value=f"More about {topk_breeds[2]}")
|
| 335 |
-
|
| 336 |
-
# # 多狗情境
|
| 337 |
-
# color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
|
| 338 |
-
# explanations = []
|
| 339 |
-
# annotated_image = image.copy()
|
| 340 |
-
# draw = ImageDraw.Draw(annotated_image)
|
| 341 |
-
# font = ImageFont.load_default()
|
| 342 |
-
|
| 343 |
-
# for i, (cropped_image, _, box) in enumerate(dogs):
|
| 344 |
-
# top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
|
| 345 |
-
# color = color_list[i % len(color_list)]
|
| 346 |
-
# draw.rectangle(box, outline=color, width=3)
|
| 347 |
-
# draw.text((box[0], box[1]), f"Dog {i+1}", fill=color, font=font)
|
| 348 |
-
|
| 349 |
-
# breed = topk_breeds[0]
|
| 350 |
-
# if top1_prob >= 0.5:
|
| 351 |
-
# description = get_dog_description(breed)
|
| 352 |
-
# formatted_description = format_description(description, breed)
|
| 353 |
-
# explanations.append(f"Dog {i+1}: {formatted_description}")
|
| 354 |
-
# elif top1_prob >= 0.2:
|
| 355 |
-
# explanations.append(f"Dog {i+1}: Top 3 possible breeds:\n"
|
| 356 |
-
# f"1. **{topk_breeds[0]}** ({topk_probs_percent[0]} confidence)\n"
|
| 357 |
-
# f"2. **{topk_breeds[1]}** ({topk_probs_percent[1]} confidence)\n"
|
| 358 |
-
# f"3. **{topk_breeds[2]}** ({topk_probs_percent[2]} confidence)")
|
| 359 |
-
# else:
|
| 360 |
-
# explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset.")
|
| 361 |
-
|
| 362 |
-
# final_explanation = "\n\n".join(explanations)
|
| 363 |
-
# return final_explanation, annotated_image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
| 364 |
-
|
| 365 |
-
# except Exception as e:
|
| 366 |
-
# return f"An error occurred: {str(e)}", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
| 367 |
-
|
| 368 |
-
# def show_details(choice):
|
| 369 |
-
# if not choice:
|
| 370 |
-
# return "Please select a breed to view details."
|
| 371 |
-
|
| 372 |
-
# try:
|
| 373 |
-
# breed = choice.split("More about ")[-1]
|
| 374 |
-
# description = get_dog_description(breed)
|
| 375 |
-
# return format_description(description, breed)
|
| 376 |
-
# except Exception as e:
|
| 377 |
-
# return f"An error occurred while showing details: {e}"
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
# with gr.Blocks() as iface:
|
| 381 |
-
# gr.HTML("<h1 style='text-align: center;'>🐶 Dog Breed Classifier 🔍</h1>")
|
| 382 |
-
# gr.HTML("<p style='text-align: center;'>Upload a picture of a dog, and the model will predict its breed, provide detailed information, and include an extra information link!</p>")
|
| 383 |
-
|
| 384 |
-
# with gr.Row():
|
| 385 |
-
# input_image = gr.Image(label="Upload a dog image", type="pil")
|
| 386 |
-
# output_image = gr.Image(label="Annotated Image")
|
| 387 |
-
|
| 388 |
-
# output = gr.Markdown(label="Prediction Results")
|
| 389 |
-
|
| 390 |
-
# with gr.Row():
|
| 391 |
-
# btn1 = gr.Button("View More 1", visible=False)
|
| 392 |
-
# btn2 = gr.Button("View More 2", visible=False)
|
| 393 |
-
# btn3 = gr.Button("View More 3", visible=False)
|
| 394 |
-
|
| 395 |
-
# input_image.change(
|
| 396 |
-
# predict,
|
| 397 |
-
# inputs=input_image,
|
| 398 |
-
# outputs=[output, output_image, btn1, btn2, btn3]
|
| 399 |
-
# )
|
| 400 |
-
|
| 401 |
-
# btn1.click(show_details, inputs=btn1, outputs=output)
|
| 402 |
-
# btn2.click(show_details, inputs=btn2, outputs=output)
|
| 403 |
-
# btn3.click(show_details, inputs=btn3, outputs=output)
|
| 404 |
-
|
| 405 |
-
# gr.Examples(
|
| 406 |
-
# examples=['Border_Collie.jpg', 'Golden_Retriever.jpeg', 'Saint_Bernard.jpeg', 'French_Bulldog.jpeg', 'Samoyed.jpg'],
|
| 407 |
-
# inputs=input_image
|
| 408 |
-
# )
|
| 409 |
-
|
| 410 |
-
# gr.HTML('For more details on this project and other work, feel free to visit my GitHub <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog_Breed_Classifier">Dog Breed Classifier</a>')
|
| 411 |
-
|
| 412 |
-
# if __name__ == "__main__":
|
| 413 |
-
# iface.launch()
|
| 414 |
-
|
| 415 |
async def predict(image):
|
| 416 |
if image is None:
|
| 417 |
-
return "Please upload an image to start.", None, gr.update(visible=False), gr.update(visible=False)
|
| 418 |
|
| 419 |
try:
|
| 420 |
if isinstance(image, np.ndarray):
|
|
@@ -424,12 +313,29 @@ async def predict(image):
|
|
| 424 |
dogs = await detect_multiple_dogs(image)
|
| 425 |
if len(dogs) == 0:
|
| 426 |
# 單狗情境
|
| 427 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 428 |
|
| 429 |
# 多狗情境
|
| 430 |
color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
|
| 431 |
explanations = []
|
| 432 |
-
choices = []
|
| 433 |
annotated_image = image.copy()
|
| 434 |
draw = ImageDraw.Draw(annotated_image)
|
| 435 |
font = ImageFont.load_default()
|
|
@@ -440,63 +346,37 @@ async def predict(image):
|
|
| 440 |
draw.rectangle(box, outline=color, width=3)
|
| 441 |
draw.text((box[0], box[1]), f"Dog {i+1}", fill=color, font=font)
|
| 442 |
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
elif top1_prob >= 0.5:
|
| 446 |
-
breed = topk_breeds[0]
|
| 447 |
description = get_dog_description(breed)
|
| 448 |
formatted_description = format_description(description, breed)
|
| 449 |
explanations.append(f"Dog {i+1}: {formatted_description}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 450 |
else:
|
| 451 |
-
|
| 452 |
-
dog_explanation += "\n".join([f"{j+1}. **{breed}** ({prob} confidence)" for j, (breed, prob) in enumerate(zip(topk_breeds[:3], topk_probs_percent[:3]))])
|
| 453 |
-
explanations.append(dog_explanation)
|
| 454 |
-
choices.extend([f"Dog {i+1}: {breed}" for breed in topk_breeds[:3]])
|
| 455 |
|
| 456 |
final_explanation = "\n\n".join(explanations)
|
| 457 |
-
|
| 458 |
-
final_explanation += "\n\nClick on a button to view more information about the breed."
|
| 459 |
-
return final_explanation, annotated_image, gr.update(visible=True, choices=choices), gr.update(visible=False)
|
| 460 |
-
else:
|
| 461 |
-
return final_explanation, annotated_image, gr.update(visible=False), gr.update(visible=False)
|
| 462 |
|
| 463 |
except Exception as e:
|
| 464 |
-
return f"An error occurred: {str(e)}", None, gr.update(visible=False), gr.update(visible=False)
|
| 465 |
-
|
| 466 |
-
async def process_single_dog(image):
|
| 467 |
-
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
|
| 468 |
-
if top1_prob < 0.2:
|
| 469 |
-
return "The image is unclear or the breed is not in the dataset. Please upload a clearer image of a dog.", None, gr.update(visible=False), gr.update(visible=False)
|
| 470 |
-
|
| 471 |
-
breed = topk_breeds[0]
|
| 472 |
-
description = get_dog_description(breed)
|
| 473 |
-
|
| 474 |
-
if top1_prob >= 0.5:
|
| 475 |
-
formatted_description = format_description(description, breed)
|
| 476 |
-
return formatted_description, image, gr.update(visible=False), gr.update(visible=False)
|
| 477 |
-
else:
|
| 478 |
-
explanation = (
|
| 479 |
-
f"The model couldn't confidently identify the breed. Here are the top 3 possible breeds:\n\n"
|
| 480 |
-
f"1. **{topk_breeds[0]}** ({topk_probs_percent[0]} confidence)\n"
|
| 481 |
-
f"2. **{topk_breeds[1]}** ({topk_probs_percent[1]} confidence)\n"
|
| 482 |
-
f"3. **{topk_breeds[2]}** ({topk_probs_percent[2]} confidence)\n\n"
|
| 483 |
-
"Click on a button to view more information about the breed."
|
| 484 |
-
)
|
| 485 |
-
choices = [f"{breed}" for breed in topk_breeds[:3]]
|
| 486 |
-
return explanation, image, gr.update(visible=True, choices=choices), gr.update(visible=False)
|
| 487 |
|
| 488 |
def show_details(choice):
|
| 489 |
if not choice:
|
| 490 |
return "Please select a breed to view details."
|
| 491 |
|
| 492 |
try:
|
| 493 |
-
breed = choice.split("
|
| 494 |
description = get_dog_description(breed)
|
| 495 |
return format_description(description, breed)
|
| 496 |
except Exception as e:
|
| 497 |
return f"An error occurred while showing details: {e}"
|
| 498 |
|
| 499 |
-
|
| 500 |
with gr.Blocks() as iface:
|
| 501 |
gr.HTML("<h1 style='text-align: center;'>🐶 Dog Breed Classifier 🔍</h1>")
|
| 502 |
gr.HTML("<p style='text-align: center;'>Upload a picture of a dog, and the model will predict its breed, provide detailed information, and include an extra information link!</p>")
|
|
@@ -506,20 +386,21 @@ with gr.Blocks() as iface:
|
|
| 506 |
output_image = gr.Image(label="Annotated Image")
|
| 507 |
|
| 508 |
output = gr.Markdown(label="Prediction Results")
|
| 509 |
-
|
| 510 |
-
|
|
|
|
|
|
|
|
|
|
| 511 |
|
| 512 |
input_image.change(
|
| 513 |
predict,
|
| 514 |
inputs=input_image,
|
| 515 |
-
outputs=[output, output_image,
|
| 516 |
)
|
| 517 |
|
| 518 |
-
|
| 519 |
-
|
| 520 |
-
|
| 521 |
-
outputs=breed_details
|
| 522 |
-
)
|
| 523 |
|
| 524 |
gr.Examples(
|
| 525 |
examples=['Border_Collie.jpg', 'Golden_Retriever.jpeg', 'Saint_Bernard.jpeg', 'French_Bulldog.jpeg', 'Samoyed.jpg'],
|
|
@@ -529,4 +410,4 @@ with gr.Blocks() as iface:
|
|
| 529 |
gr.HTML('For more details on this project and other work, feel free to visit my GitHub <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog_Breed_Classifier">Dog Breed Classifier</a>')
|
| 530 |
|
| 531 |
if __name__ == "__main__":
|
| 532 |
-
iface.launch()
|
|
|
|
| 301 |
return dogs
|
| 302 |
|
| 303 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 304 |
async def predict(image):
|
| 305 |
if image is None:
|
| 306 |
+
return "Please upload an image to start.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
| 307 |
|
| 308 |
try:
|
| 309 |
if isinstance(image, np.ndarray):
|
|
|
|
| 313 |
dogs = await detect_multiple_dogs(image)
|
| 314 |
if len(dogs) == 0:
|
| 315 |
# 單狗情境
|
| 316 |
+
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
|
| 317 |
+
if top1_prob < 0.2:
|
| 318 |
+
return "The image is unclear or the breed is not in the dataset. Please upload a clearer image of a dog.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
| 319 |
+
|
| 320 |
+
breed = topk_breeds[0]
|
| 321 |
+
description = get_dog_description(breed)
|
| 322 |
+
|
| 323 |
+
if top1_prob >= 0.5:
|
| 324 |
+
formatted_description = format_description(description, breed)
|
| 325 |
+
return formatted_description, image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
| 326 |
+
else:
|
| 327 |
+
explanation = (
|
| 328 |
+
f"The model couldn't confidently identify the breed. Here are the top 3 possible breeds:\n\n"
|
| 329 |
+
f"1. **{topk_breeds[0]}** ({topk_probs_percent[0]} confidence)\n"
|
| 330 |
+
f"2. **{topk_breeds[1]}** ({topk_probs_percent[1]} confidence)\n"
|
| 331 |
+
f"3. **{topk_breeds[2]}** ({topk_probs_percent[2]} confidence)\n\n"
|
| 332 |
+
"Click on a button to view more information about the breed."
|
| 333 |
+
)
|
| 334 |
+
return explanation, image, gr.update(visible=True, value=f"More about {topk_breeds[0]}"), gr.update(visible=True, value=f"More about {topk_breeds[1]}"), gr.update(visible=True, value=f"More about {topk_breeds[2]}")
|
| 335 |
|
| 336 |
# 多狗情境
|
| 337 |
color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
|
| 338 |
explanations = []
|
|
|
|
| 339 |
annotated_image = image.copy()
|
| 340 |
draw = ImageDraw.Draw(annotated_image)
|
| 341 |
font = ImageFont.load_default()
|
|
|
|
| 346 |
draw.rectangle(box, outline=color, width=3)
|
| 347 |
draw.text((box[0], box[1]), f"Dog {i+1}", fill=color, font=font)
|
| 348 |
|
| 349 |
+
breed = topk_breeds[0]
|
| 350 |
+
if top1_prob >= 0.5:
|
|
|
|
|
|
|
| 351 |
description = get_dog_description(breed)
|
| 352 |
formatted_description = format_description(description, breed)
|
| 353 |
explanations.append(f"Dog {i+1}: {formatted_description}")
|
| 354 |
+
elif top1_prob >= 0.2:
|
| 355 |
+
explanations.append(f"Dog {i+1}: Top 3 possible breeds:\n"
|
| 356 |
+
f"1. **{topk_breeds[0]}** ({topk_probs_percent[0]} confidence)\n"
|
| 357 |
+
f"2. **{topk_breeds[1]}** ({topk_probs_percent[1]} confidence)\n"
|
| 358 |
+
f"3. **{topk_breeds[2]}** ({topk_probs_percent[2]} confidence)")
|
| 359 |
else:
|
| 360 |
+
explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset.")
|
|
|
|
|
|
|
|
|
|
| 361 |
|
| 362 |
final_explanation = "\n\n".join(explanations)
|
| 363 |
+
return final_explanation, annotated_image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 364 |
|
| 365 |
except Exception as e:
|
| 366 |
+
return f"An error occurred: {str(e)}", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 367 |
|
| 368 |
def show_details(choice):
|
| 369 |
if not choice:
|
| 370 |
return "Please select a breed to view details."
|
| 371 |
|
| 372 |
try:
|
| 373 |
+
breed = choice.split("More about ")[-1]
|
| 374 |
description = get_dog_description(breed)
|
| 375 |
return format_description(description, breed)
|
| 376 |
except Exception as e:
|
| 377 |
return f"An error occurred while showing details: {e}"
|
| 378 |
|
| 379 |
+
|
| 380 |
with gr.Blocks() as iface:
|
| 381 |
gr.HTML("<h1 style='text-align: center;'>🐶 Dog Breed Classifier 🔍</h1>")
|
| 382 |
gr.HTML("<p style='text-align: center;'>Upload a picture of a dog, and the model will predict its breed, provide detailed information, and include an extra information link!</p>")
|
|
|
|
| 386 |
output_image = gr.Image(label="Annotated Image")
|
| 387 |
|
| 388 |
output = gr.Markdown(label="Prediction Results")
|
| 389 |
+
|
| 390 |
+
with gr.Row():
|
| 391 |
+
btn1 = gr.Button("View More 1", visible=False)
|
| 392 |
+
btn2 = gr.Button("View More 2", visible=False)
|
| 393 |
+
btn3 = gr.Button("View More 3", visible=False)
|
| 394 |
|
| 395 |
input_image.change(
|
| 396 |
predict,
|
| 397 |
inputs=input_image,
|
| 398 |
+
outputs=[output, output_image, btn1, btn2, btn3]
|
| 399 |
)
|
| 400 |
|
| 401 |
+
btn1.click(show_details, inputs=btn1, outputs=output)
|
| 402 |
+
btn2.click(show_details, inputs=btn2, outputs=output)
|
| 403 |
+
btn3.click(show_details, inputs=btn3, outputs=output)
|
|
|
|
|
|
|
| 404 |
|
| 405 |
gr.Examples(
|
| 406 |
examples=['Border_Collie.jpg', 'Golden_Retriever.jpeg', 'Saint_Bernard.jpeg', 'French_Bulldog.jpeg', 'Samoyed.jpg'],
|
|
|
|
| 410 |
gr.HTML('For more details on this project and other work, feel free to visit my GitHub <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog_Breed_Classifier">Dog Breed Classifier</a>')
|
| 411 |
|
| 412 |
if __name__ == "__main__":
|
| 413 |
+
iface.launch()
|