Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -134,25 +134,6 @@ def get_akc_breeds_link():
|
|
134 |
return "https://www.akc.org/dog-breeds/"
|
135 |
|
136 |
|
137 |
-
# def format_description(description, breed):
|
138 |
-
# if isinstance(description, dict):
|
139 |
-
# # 確保每一個描述項目換行顯示
|
140 |
-
# formatted_description = "\n\n".join([f"**{key}**: {value}" for key, value in description.items()])
|
141 |
-
# else:
|
142 |
-
# formatted_description = description
|
143 |
-
|
144 |
-
# akc_link = get_akc_breeds_link()
|
145 |
-
# formatted_description += f"\n\n**Want to learn more about dog breeds?** [Visit the AKC dog breeds page]({akc_link}) and search for {breed} to find detailed information."
|
146 |
-
|
147 |
-
# disclaimer = ("\n\n*Disclaimer: The external link provided leads to the American Kennel Club (AKC) dog breeds page. "
|
148 |
-
# "You may need to search for the specific breed on that page. "
|
149 |
-
# "I am not responsible for the content on external sites. "
|
150 |
-
# "Please refer to the AKC's terms of use and privacy policy.*")
|
151 |
-
# formatted_description += disclaimer
|
152 |
-
|
153 |
-
# return formatted_description
|
154 |
-
|
155 |
-
|
156 |
async def predict_single_dog(image):
|
157 |
image_tensor = preprocess_image(image)
|
158 |
with torch.no_grad():
|
@@ -266,242 +247,6 @@ async def process_single_dog(image):
|
|
266 |
return explanation, image, buttons[0], buttons[1], buttons[2], gr.update(visible=True), initial_state
|
267 |
|
268 |
|
269 |
-
# async def predict(image):
|
270 |
-
# if image is None:
|
271 |
-
# return "Please upload an image to start.", None, gr.update(visible=False, choices=[]), None
|
272 |
-
|
273 |
-
# try:
|
274 |
-
# if isinstance(image, np.ndarray):
|
275 |
-
# image = Image.fromarray(image)
|
276 |
-
|
277 |
-
# dogs = await detect_multiple_dogs(image)
|
278 |
-
|
279 |
-
# color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
|
280 |
-
# explanations = []
|
281 |
-
# buttons = []
|
282 |
-
# annotated_image = image.copy()
|
283 |
-
# draw = ImageDraw.Draw(annotated_image)
|
284 |
-
# font = ImageFont.load_default()
|
285 |
-
|
286 |
-
# for i, (cropped_image, detection_confidence, box) in enumerate(dogs):
|
287 |
-
# top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
|
288 |
-
# color = color_list[i % len(color_list)]
|
289 |
-
# draw.rectangle(box, outline=color, width=3)
|
290 |
-
# draw.text((box[0] + 5, box[1] + 5), f"Dog {i+1}", fill=color, font=font) # Adjust the mark place
|
291 |
-
|
292 |
-
|
293 |
-
# combined_confidence = detection_confidence * top1_prob
|
294 |
-
|
295 |
-
# if top1_prob >= 0.45:
|
296 |
-
# breed = topk_breeds[0]
|
297 |
-
# description = get_dog_description(breed)
|
298 |
-
# formatted_description = format_description(description, breed)
|
299 |
-
# explanations.append(f"Dog {i+1}: {formatted_description}")
|
300 |
-
# elif combined_confidence >= 0.15:
|
301 |
-
# dog_explanation = f"Dog {i+1}: Top 3 possible breeds:\n"
|
302 |
-
# dog_explanation += "\n".join([f"{j+1}. **{breed}** ({prob} confidence)" for j, (breed, prob) in enumerate(zip(topk_breeds[:3], topk_probs_percent[:3]))])
|
303 |
-
# explanations.append(dog_explanation)
|
304 |
-
# buttons.extend([f"Dog {i+1}: More about {breed}" for breed in topk_breeds[:3]])
|
305 |
-
# else:
|
306 |
-
# explanations.append(f"{i+1} The image is unclear or the breed is not in the dataset. Please upload a clearer image.")
|
307 |
-
|
308 |
-
|
309 |
-
# final_explanation = "\n\n".join(explanations)
|
310 |
-
# if buttons:
|
311 |
-
# final_explanation += "\n\nClick on a button to view more information about the breed."
|
312 |
-
# initial_state = {
|
313 |
-
# "explanation": final_explanation,
|
314 |
-
# "buttons": buttons,
|
315 |
-
# "show_back": True,
|
316 |
-
# "image": annotated_image,
|
317 |
-
# "is_multi_dog": len(dogs) > 1,
|
318 |
-
# "dogs_info": explanations
|
319 |
-
# }
|
320 |
-
# return final_explanation, annotated_image, gr.update(visible=True, choices=buttons), initial_state
|
321 |
-
# else:
|
322 |
-
# initial_state = {
|
323 |
-
# "explanation": final_explanation,
|
324 |
-
# "buttons": [],
|
325 |
-
# "show_back": False,
|
326 |
-
# "image": annotated_image,
|
327 |
-
# "is_multi_dog": len(dogs) > 1,
|
328 |
-
# "dogs_info": explanations
|
329 |
-
# }
|
330 |
-
# return final_explanation, annotated_image, gr.update(visible=False, choices=[]), initial_state
|
331 |
-
|
332 |
-
# except Exception as e:
|
333 |
-
# error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
|
334 |
-
# print(error_msg)
|
335 |
-
# return error_msg, None, gr.update(visible=False, choices=[]), None
|
336 |
-
|
337 |
-
|
338 |
-
# def show_details(choice, previous_output, initial_state):
|
339 |
-
# if not choice:
|
340 |
-
# return previous_output, gr.update(visible=True), initial_state
|
341 |
-
|
342 |
-
# try:
|
343 |
-
# breed = choice.split("More about ")[-1]
|
344 |
-
# description = get_dog_description(breed)
|
345 |
-
# formatted_description = format_description(description, breed)
|
346 |
-
|
347 |
-
# initial_state["current_description"] = formatted_description
|
348 |
-
# initial_state["original_buttons"] = initial_state.get("buttons", [])
|
349 |
-
|
350 |
-
# return formatted_description, gr.update(visible=True), initial_state
|
351 |
-
# except Exception as e:
|
352 |
-
# error_msg = f"An error occurred while showing details: {e}"
|
353 |
-
# print(error_msg)
|
354 |
-
# return error_msg, gr.update(visible=True), initial_state
|
355 |
-
|
356 |
-
# def go_back(state):
|
357 |
-
# buttons = state.get("buttons", [])
|
358 |
-
# return (
|
359 |
-
# state["explanation"],
|
360 |
-
# state["image"],
|
361 |
-
# gr.update(visible=True, choices=buttons),
|
362 |
-
# gr.update(visible=False),
|
363 |
-
# state
|
364 |
-
# )
|
365 |
-
|
366 |
-
# with gr.Blocks() as iface:
|
367 |
-
# gr.HTML("<h1 style='text-align: center;'>🐶 Dog Breed Classifier 🔍</h1>")
|
368 |
-
# gr.HTML("<p style='text-align: center;'>Upload a picture of a dog, and the model will predict its breed, provide detailed information, and include an extra information link!</p>")
|
369 |
-
|
370 |
-
# with gr.Row():
|
371 |
-
# input_image = gr.Image(label="Upload a dog image", type="pil")
|
372 |
-
# output_image = gr.Image(label="Annotated Image")
|
373 |
-
|
374 |
-
# output = gr.Markdown(label="Prediction Results")
|
375 |
-
|
376 |
-
# breed_buttons = gr.Radio(choices=[], label="More Information", visible=False)
|
377 |
-
|
378 |
-
# back_button = gr.Button("Back", visible=False)
|
379 |
-
|
380 |
-
# initial_state = gr.State()
|
381 |
-
|
382 |
-
# input_image.change(
|
383 |
-
# predict,
|
384 |
-
# inputs=input_image,
|
385 |
-
# outputs=[output, output_image, breed_buttons, initial_state]
|
386 |
-
# )
|
387 |
-
|
388 |
-
# breed_buttons.change(
|
389 |
-
# show_details,
|
390 |
-
# inputs=[breed_buttons, output, initial_state],
|
391 |
-
# outputs=[output, back_button, initial_state]
|
392 |
-
# )
|
393 |
-
|
394 |
-
# back_button.click(
|
395 |
-
# go_back,
|
396 |
-
# inputs=[initial_state],
|
397 |
-
# outputs=[output, output_image, breed_buttons, back_button, initial_state]
|
398 |
-
# )
|
399 |
-
|
400 |
-
# gr.Examples(
|
401 |
-
# examples=['Border_Collie.jpg', 'Golden_Retriever.jpeg', 'Saint_Bernard.jpeg', 'French_Bulldog.jpeg', 'Samoyed.jpg'],
|
402 |
-
# inputs=input_image
|
403 |
-
# )
|
404 |
-
|
405 |
-
# gr.HTML('For more details on this project and other work, feel free to visit my GitHub <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog_Breed_Classifier">Dog Breed Classifier</a>')
|
406 |
-
|
407 |
-
|
408 |
-
# async def predict(image):
|
409 |
-
# if image is None:
|
410 |
-
# return "Please upload an image to start.", None, gr.update(visible=False, choices=[]), None
|
411 |
-
|
412 |
-
# try:
|
413 |
-
# if isinstance(image, np.ndarray):
|
414 |
-
# image = Image.fromarray(image)
|
415 |
-
|
416 |
-
# dogs = await detect_multiple_dogs(image)
|
417 |
-
|
418 |
-
# color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
|
419 |
-
# html_output = """
|
420 |
-
# <style>
|
421 |
-
# .dog-info { border: 1px solid #ddd; margin-bottom: 20px; padding: 15px; border-radius: 5px; box-shadow: 0 2px 5px rgba(0,0,0,0.1); }
|
422 |
-
# .dog-info h2 { background-color: #f0f0f0; padding: 10px; margin: -15px -15px 15px -15px; border-radius: 5px 5px 0 0; }
|
423 |
-
# .breed-buttons { margin-top: 10px; }
|
424 |
-
# .breed-button { margin-right: 10px; margin-bottom: 10px; padding: 5px 10px; background-color: #4CAF50; color: white; border: none; border-radius: 3px; cursor: pointer; }
|
425 |
-
# </style>
|
426 |
-
# """
|
427 |
-
# buttons = []
|
428 |
-
# annotated_image = image.copy()
|
429 |
-
# draw = ImageDraw.Draw(annotated_image)
|
430 |
-
# font = ImageFont.load_default()
|
431 |
-
|
432 |
-
# for i, (cropped_image, detection_confidence, box) in enumerate(dogs):
|
433 |
-
# top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
|
434 |
-
# color = color_list[i % len(color_list)]
|
435 |
-
# draw.rectangle(box, outline=color, width=3)
|
436 |
-
# draw.text((box[0] + 5, box[1] + 5), f"Dog {i+1}", fill=color, font=font)
|
437 |
-
|
438 |
-
# combined_confidence = detection_confidence * top1_prob
|
439 |
-
# html_output += f'<div class="dog-info" style="border-left: 5px solid {color};">'
|
440 |
-
# html_output += f'<h2>Dog {i+1}</h2>'
|
441 |
-
|
442 |
-
# if top1_prob >= 0.45:
|
443 |
-
# breed = topk_breeds[0]
|
444 |
-
# description = get_dog_description(breed)
|
445 |
-
# html_output += f"<p><strong>{breed}</strong> ({top1_prob:.2%} confidence)</p>"
|
446 |
-
# html_output += format_description_html(description, breed)
|
447 |
-
# button_id = f"Dog {i+1}: More about {breed}"
|
448 |
-
# html_output += f'<div class="breed-buttons"><button class="breed-button" onclick="handle_button_click(\'{button_id}\')">{breed}</button></div>'
|
449 |
-
# buttons.append(button_id)
|
450 |
-
# elif combined_confidence >= 0.15:
|
451 |
-
# html_output += f"<p>Top 3 possible breeds:</p><ul>"
|
452 |
-
# for j, (breed, prob) in enumerate(zip(topk_breeds[:3], topk_probs_percent[:3])):
|
453 |
-
# html_output += f"<li><strong>{breed}</strong> ({prob} confidence)</li>"
|
454 |
-
# html_output += "</ul>"
|
455 |
-
# html_output += '<div class="breed-buttons">'
|
456 |
-
# for breed in topk_breeds[:3]:
|
457 |
-
# button_id = f"Dog {i+1}: More about {breed}"
|
458 |
-
# html_output += f'<button class="breed-button" onclick="handle_button_click(\'{button_id}\')">{breed}</button>'
|
459 |
-
# buttons.append(button_id)
|
460 |
-
# html_output += '</div>'
|
461 |
-
# else:
|
462 |
-
# html_output += "<p>The image is unclear or the breed is not in the dataset. Please upload a clearer image.</p>"
|
463 |
-
|
464 |
-
# html_output += '</div>'
|
465 |
-
|
466 |
-
# if buttons:
|
467 |
-
# html_output += """
|
468 |
-
# <script>
|
469 |
-
# function handle_button_click(button_id) {
|
470 |
-
# const radio = document.querySelector('input[type=radio][value="' + button_id + '"]');
|
471 |
-
# if (radio) {
|
472 |
-
# radio.click();
|
473 |
-
# } else {
|
474 |
-
# console.error("Radio button not found:", button_id);
|
475 |
-
# }
|
476 |
-
# }
|
477 |
-
# </script>
|
478 |
-
# """
|
479 |
-
# initial_state = {
|
480 |
-
# "explanation": html_output,
|
481 |
-
# "buttons": buttons,
|
482 |
-
# "show_back": True,
|
483 |
-
# "image": annotated_image,
|
484 |
-
# "is_multi_dog": len(dogs) > 1,
|
485 |
-
# "dogs_info": html_output
|
486 |
-
# }
|
487 |
-
# return html_output, annotated_image, gr.update(visible=True, choices=buttons), initial_state
|
488 |
-
# else:
|
489 |
-
# initial_state = {
|
490 |
-
# "explanation": html_output,
|
491 |
-
# "buttons": [],
|
492 |
-
# "show_back": False,
|
493 |
-
# "image": annotated_image,
|
494 |
-
# "is_multi_dog": len(dogs) > 1,
|
495 |
-
# "dogs_info": html_output
|
496 |
-
# }
|
497 |
-
# return html_output, annotated_image, gr.update(visible=False, choices=[]), initial_state
|
498 |
-
|
499 |
-
# except Exception as e:
|
500 |
-
# error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
|
501 |
-
# print(error_msg)
|
502 |
-
# return error_msg, None, gr.update(visible=False, choices=[]), None
|
503 |
-
|
504 |
-
|
505 |
async def predict(image):
|
506 |
if image is None:
|
507 |
return "Please upload an image to start.", None, gr.update(visible=False, choices=[]), None
|
@@ -539,7 +284,8 @@ async def predict(image):
|
|
539 |
elif combined_confidence >= 0.15:
|
540 |
dogs_info += f"<p>Top 3 possible breeds:</p><ul>"
|
541 |
for j, (breed, prob) in enumerate(zip(topk_breeds[:3], topk_probs_percent[:3])):
|
542 |
-
dogs_info += f"<li><strong>{breed}</strong> ({prob} confidence)</li>"
|
|
|
543 |
dogs_info += "</ul>"
|
544 |
buttons_html = '<div class="breed-buttons">' #new
|
545 |
for breed in topk_breeds[:3]:
|
|
|
134 |
return "https://www.akc.org/dog-breeds/"
|
135 |
|
136 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
async def predict_single_dog(image):
|
138 |
image_tensor = preprocess_image(image)
|
139 |
with torch.no_grad():
|
|
|
247 |
return explanation, image, buttons[0], buttons[1], buttons[2], gr.update(visible=True), initial_state
|
248 |
|
249 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
250 |
async def predict(image):
|
251 |
if image is None:
|
252 |
return "Please upload an image to start.", None, gr.update(visible=False, choices=[]), None
|
|
|
284 |
elif combined_confidence >= 0.15:
|
285 |
dogs_info += f"<p>Top 3 possible breeds:</p><ul>"
|
286 |
for j, (breed, prob) in enumerate(zip(topk_breeds[:3], topk_probs_percent[:3])):
|
287 |
+
#dogs_info += f"<li><strong>{breed}</strong> ({prob} confidence)</li>"
|
288 |
+
dogs_info += f"<li><strong>{breed}</strong> ({prob:.2f}% confidence)</li>"
|
289 |
dogs_info += "</ul>"
|
290 |
buttons_html = '<div class="breed-buttons">' #new
|
291 |
for breed in topk_breeds[:3]:
|