Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -224,207 +224,53 @@ async def process_single_dog(image):
|
|
| 224 |
}
|
| 225 |
return explanation, image, buttons[0], buttons[1], buttons[2], gr.update(visible=True), initial_state
|
| 226 |
|
| 227 |
-
async def predict(image):
|
| 228 |
-
if image is None:
|
| 229 |
-
return "Please upload an image to start.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), None
|
| 230 |
-
try:
|
| 231 |
-
if isinstance(image, np.ndarray):
|
| 232 |
-
image = Image.fromarray(image)
|
| 233 |
-
dogs = await detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.4)
|
| 234 |
-
|
| 235 |
-
if len(dogs) <= 1:
|
| 236 |
-
return await process_single_dog(image)
|
| 237 |
-
|
| 238 |
-
color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
|
| 239 |
-
explanations = []
|
| 240 |
-
buttons = []
|
| 241 |
-
annotated_image = image.copy()
|
| 242 |
-
draw = ImageDraw.Draw(annotated_image)
|
| 243 |
-
font = ImageFont.load_default()
|
| 244 |
-
|
| 245 |
-
for i, (cropped_image, _, box) in enumerate(dogs):
|
| 246 |
-
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
|
| 247 |
-
color = color_list[i % len(color_list)]
|
| 248 |
-
draw.rectangle(box, outline=color, width=3)
|
| 249 |
-
draw.text((box[0], box[1]), f"Dog {i+1}", fill=color, font=font)
|
| 250 |
-
|
| 251 |
-
breed = topk_breeds[0]
|
| 252 |
-
if top1_prob >= 0.5:
|
| 253 |
-
description = get_dog_description(breed)
|
| 254 |
-
formatted_description = format_description(description, breed)
|
| 255 |
-
explanations.append(f"Dog {i+1}: {formatted_description}")
|
| 256 |
-
elif top1_prob >= 0.2:
|
| 257 |
-
dog_explanation = f"Dog {i+1}: Top 3 possible breeds:\n"
|
| 258 |
-
dog_explanation += "\n".join([f"{j+1}. **{breed}** ({prob} confidence)" for j, (breed, prob) in enumerate(zip(topk_breeds[:3], topk_probs_percent[:3]))])
|
| 259 |
-
explanations.append(dog_explanation)
|
| 260 |
-
buttons.extend([gr.update(visible=True, value=f"Dog {i+1}: More about {breed}") for breed in topk_breeds[:3]])
|
| 261 |
-
else:
|
| 262 |
-
explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset.")
|
| 263 |
-
|
| 264 |
-
final_explanation = "\n\n".join(explanations)
|
| 265 |
-
if buttons:
|
| 266 |
-
final_explanation += "\n\nClick on a button to view more information about the breed."
|
| 267 |
-
initial_state = {
|
| 268 |
-
"explanation": final_explanation,
|
| 269 |
-
"buttons": buttons,
|
| 270 |
-
"show_back": True,
|
| 271 |
-
"image": annotated_image,
|
| 272 |
-
"is_multi_dog": True,
|
| 273 |
-
"dogs_info": explanations
|
| 274 |
-
}
|
| 275 |
-
return (final_explanation, annotated_image,
|
| 276 |
-
buttons[0] if len(buttons) > 0 else gr.update(visible=False),
|
| 277 |
-
buttons[1] if len(buttons) > 1 else gr.update(visible=False),
|
| 278 |
-
buttons[2] if len(buttons) > 2 else gr.update(visible=False),
|
| 279 |
-
gr.update(visible=True),
|
| 280 |
-
initial_state)
|
| 281 |
-
else:
|
| 282 |
-
initial_state = {
|
| 283 |
-
"explanation": final_explanation,
|
| 284 |
-
"buttons": [],
|
| 285 |
-
"show_back": False,
|
| 286 |
-
"image": annotated_image,
|
| 287 |
-
"is_multi_dog": True,
|
| 288 |
-
"dogs_info": explanations
|
| 289 |
-
}
|
| 290 |
-
return final_explanation, annotated_image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), initial_state
|
| 291 |
-
except Exception as e:
|
| 292 |
-
error_msg = f"An error occurred: {str(e)}"
|
| 293 |
-
print(error_msg) # ๆทปๅ ๆฅ่ช่ผธๅบ
|
| 294 |
-
return error_msg, None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), None
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
# async def detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.4, merge_threshold=0.5):
|
| 299 |
-
# results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
| 300 |
-
# dogs = []
|
| 301 |
-
|
| 302 |
-
# image_area = image.width * image.height
|
| 303 |
-
# min_area_ratio = 0.005 # ๆๅฐๆชขๆธฌ้ข็ฉไฝๆดๅๅๅ็ๆฏไพ
|
| 304 |
-
|
| 305 |
-
# for box in results.boxes:
|
| 306 |
-
# if box.cls == 16: # COCO ๆธๆ้ไธญ็็้กๅฅๆฏ 16
|
| 307 |
-
# xyxy = box.xyxy[0].tolist()
|
| 308 |
-
# area = (xyxy[2] - xyxy[0]) * (xyxy[3] - xyxy[1])
|
| 309 |
-
# if area / image_area >= min_area_ratio:
|
| 310 |
-
# confidence = box.conf.item()
|
| 311 |
-
# dogs.append((xyxy, confidence))
|
| 312 |
-
|
| 313 |
-
# if dogs:
|
| 314 |
-
# boxes = torch.tensor([dog[0] for dog in dogs])
|
| 315 |
-
# scores = torch.tensor([dog[1] for dog in dogs])
|
| 316 |
-
|
| 317 |
-
# # ๆ็จ NMS
|
| 318 |
-
# keep = nms(boxes, scores, iou_threshold)
|
| 319 |
-
|
| 320 |
-
# merged_dogs = []
|
| 321 |
-
# for i in keep:
|
| 322 |
-
# xyxy = boxes[i].tolist()
|
| 323 |
-
# confidence = scores[i].item()
|
| 324 |
-
# merged_dogs.append((xyxy, confidence))
|
| 325 |
-
|
| 326 |
-
# # ๅพ่็๏ผๅ้ข้ๆผๆฅ่ฟ็ๆชขๆธฌๆก
|
| 327 |
-
# final_dogs = []
|
| 328 |
-
# while merged_dogs:
|
| 329 |
-
# base_dog = merged_dogs.pop(0)
|
| 330 |
-
# to_merge = [base_dog]
|
| 331 |
-
|
| 332 |
-
# i = 0
|
| 333 |
-
# while i < len(merged_dogs):
|
| 334 |
-
# iou = box_iou(torch.tensor([base_dog[0]]), torch.tensor([merged_dogs[i][0]]))[0][0].item()
|
| 335 |
-
# if iou > merge_threshold:
|
| 336 |
-
# to_merge.append(merged_dogs.pop(i))
|
| 337 |
-
# else:
|
| 338 |
-
# i += 1
|
| 339 |
-
|
| 340 |
-
# if len(to_merge) == 1:
|
| 341 |
-
# final_dogs.append(base_dog)
|
| 342 |
-
# else:
|
| 343 |
-
# # ๅฆๆๆชขๆธฌๅฐๅคๅ้็ๆก๏ผๅ่ฉฆๅ้ขๅฎๅ
|
| 344 |
-
# centers = torch.tensor([[((box[0] + box[2]) / 2, (box[1] + box[3]) / 2)] for box, _ in to_merge])
|
| 345 |
-
# distances = torch.cdist(centers, centers)
|
| 346 |
-
|
| 347 |
-
# if torch.any(distances > 0): # ็ขบไฟไธๆฏๅฎๅ
จ้็
|
| 348 |
-
# max_distance = distances.max()
|
| 349 |
-
# if max_distance > (base_dog[0][2] - base_dog[0][0]) * 0.5: # ๅฆๆๆๅคง่ท้ขๅคงๆผๆกๅฏฌๅบฆ็ไธๅ
|
| 350 |
-
# final_dogs.extend(to_merge)
|
| 351 |
-
# else:
|
| 352 |
-
# # ๅไฝต็บไธๅๆก
|
| 353 |
-
# merged_box = torch.tensor([box for box, _ in to_merge]).mean(dim=0)
|
| 354 |
-
# merged_confidence = max(conf for _, conf in to_merge)
|
| 355 |
-
# final_dogs.append((merged_box.tolist(), merged_confidence))
|
| 356 |
-
# else:
|
| 357 |
-
# # ๅฎๅ
จ้็็ๆ
ๆณ๏ผไฟ็็ฝฎไฟกๅบฆๆ้ซ็
|
| 358 |
-
# best_dog = max(to_merge, key=lambda x: x[1])
|
| 359 |
-
# final_dogs.append(best_dog)
|
| 360 |
-
|
| 361 |
-
# # ๆดๅฑ้็ๆกไธฆๅตๅปบๅช่ฃ็ๅๅ
|
| 362 |
-
# expanded_dogs = []
|
| 363 |
-
# for xyxy, confidence in final_dogs:
|
| 364 |
-
# expanded_xyxy = [
|
| 365 |
-
# max(0, xyxy[0] - 20),
|
| 366 |
-
# max(0, xyxy[1] - 20),
|
| 367 |
-
# min(image.width, xyxy[2] + 20),
|
| 368 |
-
# min(image.height, xyxy[3] + 20)
|
| 369 |
-
# ]
|
| 370 |
-
# cropped_image = image.crop(expanded_xyxy)
|
| 371 |
-
# expanded_dogs.append((cropped_image, confidence, expanded_xyxy))
|
| 372 |
-
|
| 373 |
-
# return expanded_dogs
|
| 374 |
-
|
| 375 |
-
# # ๅฆๆๆฒๆๆชขๆธฌๅฐ็็๏ผ่ฟๅๆดๅผตๅ็
|
| 376 |
-
# return [(image, 1.0, [0, 0, image.width, image.height])]
|
| 377 |
-
|
| 378 |
# async def predict(image):
|
| 379 |
# if image is None:
|
| 380 |
# return "Please upload an image to start.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), None
|
| 381 |
-
|
| 382 |
# try:
|
| 383 |
# if isinstance(image, np.ndarray):
|
| 384 |
# image = Image.fromarray(image)
|
| 385 |
-
|
| 386 |
-
# dogs = await detect_multiple_dogs(image)
|
| 387 |
|
| 388 |
-
# # ๅฆๆๆฒๆๆชขๆธฌๅฐ็็ๆๅชๆชขๆธฌๅฐไธ้ป๏ผไฝฟ็จๆดๅผตๅๅ้ฒ่กๅ้ก
|
| 389 |
# if len(dogs) <= 1:
|
| 390 |
-
#
|
| 391 |
-
|
| 392 |
-
# return await process_single_dog(image)
|
| 393 |
-
# else:
|
| 394 |
-
# dogs = [(image, 1.0, [0, 0, image.width, image.height])]
|
| 395 |
-
|
| 396 |
-
# # ๅค็ๆ
ๅข่็ไฟๆไธ่ฎ
|
| 397 |
# color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
|
| 398 |
# explanations = []
|
| 399 |
# buttons = []
|
| 400 |
# annotated_image = image.copy()
|
| 401 |
# draw = ImageDraw.Draw(annotated_image)
|
| 402 |
# font = ImageFont.load_default()
|
| 403 |
-
|
| 404 |
# for i, (cropped_image, _, box) in enumerate(dogs):
|
| 405 |
# top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
|
| 406 |
# color = color_list[i % len(color_list)]
|
| 407 |
# draw.rectangle(box, outline=color, width=3)
|
| 408 |
# draw.text((box[0], box[1]), f"Dog {i+1}", fill=color, font=font)
|
| 409 |
-
|
| 410 |
# breed = topk_breeds[0]
|
| 411 |
# if top1_prob >= 0.5:
|
| 412 |
# description = get_dog_description(breed)
|
| 413 |
# formatted_description = format_description(description, breed)
|
| 414 |
# explanations.append(f"Dog {i+1}: {formatted_description}")
|
| 415 |
-
#
|
| 416 |
# dog_explanation = f"Dog {i+1}: Top 3 possible breeds:\n"
|
| 417 |
# dog_explanation += "\n".join([f"{j+1}. **{breed}** ({prob} confidence)" for j, (breed, prob) in enumerate(zip(topk_breeds[:3], topk_probs_percent[:3]))])
|
| 418 |
# explanations.append(dog_explanation)
|
| 419 |
# buttons.extend([gr.update(visible=True, value=f"Dog {i+1}: More about {breed}") for breed in topk_breeds[:3]])
|
| 420 |
-
|
|
|
|
|
|
|
| 421 |
# final_explanation = "\n\n".join(explanations)
|
| 422 |
# if buttons:
|
| 423 |
# final_explanation += "\n\nClick on a button to view more information about the breed."
|
| 424 |
# initial_state = {
|
| 425 |
# "explanation": final_explanation,
|
| 426 |
# "buttons": buttons,
|
| 427 |
-
# "show_back": True
|
|
|
|
|
|
|
|
|
|
| 428 |
# }
|
| 429 |
# return (final_explanation, annotated_image,
|
| 430 |
# buttons[0] if len(buttons) > 0 else gr.update(visible=False),
|
|
@@ -436,27 +282,172 @@ async def predict(image):
|
|
| 436 |
# initial_state = {
|
| 437 |
# "explanation": final_explanation,
|
| 438 |
# "buttons": [],
|
| 439 |
-
# "show_back": False
|
|
|
|
|
|
|
|
|
|
| 440 |
# }
|
| 441 |
# return final_explanation, annotated_image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), initial_state
|
| 442 |
-
|
| 443 |
# except Exception as e:
|
| 444 |
# error_msg = f"An error occurred: {str(e)}"
|
| 445 |
# print(error_msg) # ๆทปๅ ๆฅ่ช่ผธๅบ
|
| 446 |
# return error_msg, None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 447 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 448 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 449 |
|
| 450 |
def show_details(choice, previous_output, initial_state):
|
| 451 |
if not choice:
|
| 452 |
return previous_output, gr.update(visible=True), initial_state
|
| 453 |
|
| 454 |
try:
|
| 455 |
-
breed = choice.split("More about ")
|
| 456 |
description = get_dog_description(breed)
|
| 457 |
formatted_description = format_description(description, breed)
|
| 458 |
|
| 459 |
-
#
|
| 460 |
initial_state["current_description"] = formatted_description
|
| 461 |
initial_state["original_buttons"] = initial_state.get("buttons", [])
|
| 462 |
|
|
@@ -471,10 +462,8 @@ def go_back(state):
|
|
| 471 |
return (
|
| 472 |
state["explanation"],
|
| 473 |
state["image"],
|
| 474 |
-
buttons
|
| 475 |
-
|
| 476 |
-
buttons[2] if len(buttons) > 2 else gr.update(visible=False),
|
| 477 |
-
gr.update(visible=False), # ้ฑ่ back ๆ้
|
| 478 |
state
|
| 479 |
)
|
| 480 |
|
|
@@ -488,10 +477,9 @@ with gr.Blocks() as iface:
|
|
| 488 |
|
| 489 |
output = gr.Markdown(label="Prediction Results")
|
| 490 |
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
btn3 = gr.Button("View More 3", visible=False)
|
| 495 |
|
| 496 |
back_button = gr.Button("Back", visible=False)
|
| 497 |
|
|
@@ -500,20 +488,25 @@ with gr.Blocks() as iface:
|
|
| 500 |
input_image.change(
|
| 501 |
predict,
|
| 502 |
inputs=input_image,
|
| 503 |
-
outputs=[output, output_image,
|
| 504 |
)
|
| 505 |
|
| 506 |
-
|
| 507 |
-
|
| 508 |
-
|
| 509 |
-
|
| 510 |
-
|
| 511 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 512 |
|
| 513 |
back_button.click(
|
| 514 |
go_back,
|
| 515 |
inputs=[initial_state],
|
| 516 |
-
outputs=[output, output_image,
|
| 517 |
)
|
| 518 |
|
| 519 |
gr.Examples(
|
|
@@ -524,4 +517,6 @@ with gr.Blocks() as iface:
|
|
| 524 |
gr.HTML('For more details on this project and other work, feel free to visit my GitHub <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog_Breed_Classifier">Dog Breed Classifier</a>')
|
| 525 |
|
| 526 |
if __name__ == "__main__":
|
| 527 |
-
iface.launch()
|
|
|
|
|
|
|
|
|
| 224 |
}
|
| 225 |
return explanation, image, buttons[0], buttons[1], buttons[2], gr.update(visible=True), initial_state
|
| 226 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
# async def predict(image):
|
| 228 |
# if image is None:
|
| 229 |
# return "Please upload an image to start.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), None
|
|
|
|
| 230 |
# try:
|
| 231 |
# if isinstance(image, np.ndarray):
|
| 232 |
# image = Image.fromarray(image)
|
| 233 |
+
# dogs = await detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.4)
|
|
|
|
| 234 |
|
|
|
|
| 235 |
# if len(dogs) <= 1:
|
| 236 |
+
# return await process_single_dog(image)
|
| 237 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 238 |
# color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
|
| 239 |
# explanations = []
|
| 240 |
# buttons = []
|
| 241 |
# annotated_image = image.copy()
|
| 242 |
# draw = ImageDraw.Draw(annotated_image)
|
| 243 |
# font = ImageFont.load_default()
|
| 244 |
+
|
| 245 |
# for i, (cropped_image, _, box) in enumerate(dogs):
|
| 246 |
# top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
|
| 247 |
# color = color_list[i % len(color_list)]
|
| 248 |
# draw.rectangle(box, outline=color, width=3)
|
| 249 |
# draw.text((box[0], box[1]), f"Dog {i+1}", fill=color, font=font)
|
| 250 |
+
|
| 251 |
# breed = topk_breeds[0]
|
| 252 |
# if top1_prob >= 0.5:
|
| 253 |
# description = get_dog_description(breed)
|
| 254 |
# formatted_description = format_description(description, breed)
|
| 255 |
# explanations.append(f"Dog {i+1}: {formatted_description}")
|
| 256 |
+
# elif top1_prob >= 0.2:
|
| 257 |
# dog_explanation = f"Dog {i+1}: Top 3 possible breeds:\n"
|
| 258 |
# dog_explanation += "\n".join([f"{j+1}. **{breed}** ({prob} confidence)" for j, (breed, prob) in enumerate(zip(topk_breeds[:3], topk_probs_percent[:3]))])
|
| 259 |
# explanations.append(dog_explanation)
|
| 260 |
# buttons.extend([gr.update(visible=True, value=f"Dog {i+1}: More about {breed}") for breed in topk_breeds[:3]])
|
| 261 |
+
# else:
|
| 262 |
+
# explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset.")
|
| 263 |
+
|
| 264 |
# final_explanation = "\n\n".join(explanations)
|
| 265 |
# if buttons:
|
| 266 |
# final_explanation += "\n\nClick on a button to view more information about the breed."
|
| 267 |
# initial_state = {
|
| 268 |
# "explanation": final_explanation,
|
| 269 |
# "buttons": buttons,
|
| 270 |
+
# "show_back": True,
|
| 271 |
+
# "image": annotated_image,
|
| 272 |
+
# "is_multi_dog": True,
|
| 273 |
+
# "dogs_info": explanations
|
| 274 |
# }
|
| 275 |
# return (final_explanation, annotated_image,
|
| 276 |
# buttons[0] if len(buttons) > 0 else gr.update(visible=False),
|
|
|
|
| 282 |
# initial_state = {
|
| 283 |
# "explanation": final_explanation,
|
| 284 |
# "buttons": [],
|
| 285 |
+
# "show_back": False,
|
| 286 |
+
# "image": annotated_image,
|
| 287 |
+
# "is_multi_dog": True,
|
| 288 |
+
# "dogs_info": explanations
|
| 289 |
# }
|
| 290 |
# return final_explanation, annotated_image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), initial_state
|
|
|
|
| 291 |
# except Exception as e:
|
| 292 |
# error_msg = f"An error occurred: {str(e)}"
|
| 293 |
# print(error_msg) # ๆทปๅ ๆฅ่ช่ผธๅบ
|
| 294 |
# return error_msg, None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), None
|
| 295 |
+
|
| 296 |
+
|
| 297 |
+
# def show_details(choice, previous_output, initial_state):
|
| 298 |
+
# if not choice:
|
| 299 |
+
# return previous_output, gr.update(visible=True), initial_state
|
| 300 |
+
|
| 301 |
+
# try:
|
| 302 |
+
# breed = choice.split("More about ")[-1]
|
| 303 |
+
# description = get_dog_description(breed)
|
| 304 |
+
# formatted_description = format_description(description, breed)
|
| 305 |
+
|
| 306 |
+
# # ไฟๅญ็ถๅๆ่ฟฐๅๅๅงๆ้็ๆ
|
| 307 |
+
# initial_state["current_description"] = formatted_description
|
| 308 |
+
# initial_state["original_buttons"] = initial_state.get("buttons", [])
|
| 309 |
|
| 310 |
+
# return formatted_description, gr.update(visible=True), initial_state
|
| 311 |
+
# except Exception as e:
|
| 312 |
+
# error_msg = f"An error occurred while showing details: {e}"
|
| 313 |
+
# print(error_msg)
|
| 314 |
+
# return error_msg, gr.update(visible=True), initial_state
|
| 315 |
+
|
| 316 |
+
# def go_back(state):
|
| 317 |
+
# buttons = state.get("buttons", [])
|
| 318 |
+
# return (
|
| 319 |
+
# state["explanation"],
|
| 320 |
+
# state["image"],
|
| 321 |
+
# buttons[0] if len(buttons) > 0 else gr.update(visible=False),
|
| 322 |
+
# buttons[1] if len(buttons) > 1 else gr.update(visible=False),
|
| 323 |
+
# buttons[2] if len(buttons) > 2 else gr.update(visible=False),
|
| 324 |
+
# gr.update(visible=False), # ้ฑ่ back ๆ้
|
| 325 |
+
# state
|
| 326 |
+
# )
|
| 327 |
+
|
| 328 |
+
# with gr.Blocks() as iface:
|
| 329 |
+
# gr.HTML("<h1 style='text-align: center;'>๐ถ Dog Breed Classifier ๐</h1>")
|
| 330 |
+
# gr.HTML("<p style='text-align: center;'>Upload a picture of a dog, and the model will predict its breed, provide detailed information, and include an extra information link!</p>")
|
| 331 |
+
|
| 332 |
+
# with gr.Row():
|
| 333 |
+
# input_image = gr.Image(label="Upload a dog image", type="pil")
|
| 334 |
+
# output_image = gr.Image(label="Annotated Image")
|
| 335 |
+
|
| 336 |
+
# output = gr.Markdown(label="Prediction Results")
|
| 337 |
+
|
| 338 |
+
# with gr.Row():
|
| 339 |
+
# btn1 = gr.Button("View More 1", visible=False)
|
| 340 |
+
# btn2 = gr.Button("View More 2", visible=False)
|
| 341 |
+
# btn3 = gr.Button("View More 3", visible=False)
|
| 342 |
+
|
| 343 |
+
# back_button = gr.Button("Back", visible=False)
|
| 344 |
+
|
| 345 |
+
# initial_state = gr.State()
|
| 346 |
+
|
| 347 |
+
# input_image.change(
|
| 348 |
+
# predict,
|
| 349 |
+
# inputs=input_image,
|
| 350 |
+
# outputs=[output, output_image, btn1, btn2, btn3, back_button, initial_state]
|
| 351 |
+
# )
|
| 352 |
+
|
| 353 |
+
# for btn in [btn1, btn2, btn3]:
|
| 354 |
+
# btn.click(
|
| 355 |
+
# show_details,
|
| 356 |
+
# inputs=[btn, output, initial_state],
|
| 357 |
+
# outputs=[output, back_button, initial_state]
|
| 358 |
+
# )
|
| 359 |
+
|
| 360 |
+
# back_button.click(
|
| 361 |
+
# go_back,
|
| 362 |
+
# inputs=[initial_state],
|
| 363 |
+
# outputs=[output, output_image, btn1, btn2, btn3, back_button, initial_state]
|
| 364 |
+
# )
|
| 365 |
+
|
| 366 |
+
# gr.Examples(
|
| 367 |
+
# examples=['Border_Collie.jpg', 'Golden_Retriever.jpeg', 'Saint_Bernard.jpeg', 'French_Bulldog.jpeg', 'Samoyed.jpg'],
|
| 368 |
+
# inputs=input_image
|
| 369 |
+
# )
|
| 370 |
+
|
| 371 |
+
# gr.HTML('For more details on this project and other work, feel free to visit my GitHub <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog_Breed_Classifier">Dog Breed Classifier</a>')
|
| 372 |
+
|
| 373 |
+
# if __name__ == "__main__":
|
| 374 |
+
# iface.launch()
|
| 375 |
+
|
| 376 |
+
|
| 377 |
+
async def predict(image):
|
| 378 |
+
if image is None:
|
| 379 |
+
return "Please upload an image to start.", None, [], gr.update(visible=False), None
|
| 380 |
+
|
| 381 |
+
try:
|
| 382 |
+
if isinstance(image, np.ndarray):
|
| 383 |
+
image = Image.fromarray(image)
|
| 384 |
+
|
| 385 |
+
dogs = await detect_multiple_dogs(image)
|
| 386 |
+
|
| 387 |
+
color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
|
| 388 |
+
explanations = []
|
| 389 |
+
buttons = []
|
| 390 |
+
annotated_image = image.copy()
|
| 391 |
+
draw = ImageDraw.Draw(annotated_image)
|
| 392 |
+
font = ImageFont.load_default()
|
| 393 |
+
|
| 394 |
+
for i, (cropped_image, _, box) in enumerate(dogs):
|
| 395 |
+
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
|
| 396 |
+
color = color_list[i % len(color_list)]
|
| 397 |
+
draw.rectangle(box, outline=color, width=3)
|
| 398 |
+
draw.text((box[0], box[1]), f"Dog {i+1}", fill=color, font=font)
|
| 399 |
|
| 400 |
+
if top1_prob >= 0.5:
|
| 401 |
+
breed = topk_breeds[0]
|
| 402 |
+
description = get_dog_description(breed)
|
| 403 |
+
formatted_description = format_description(description, breed)
|
| 404 |
+
explanations.append(f"Dog {i+1}: {formatted_description}")
|
| 405 |
+
elif top1_prob >= 0.2:
|
| 406 |
+
dog_explanation = f"Dog {i+1}: Top 3 possible breeds:\n"
|
| 407 |
+
dog_explanation += "\n".join([f"{j+1}. **{breed}** ({prob} confidence)" for j, (breed, prob) in enumerate(zip(topk_breeds[:3], topk_probs_percent[:3]))])
|
| 408 |
+
explanations.append(dog_explanation)
|
| 409 |
+
buttons.extend([gr.Button(f"Dog {i+1}: More about {breed}", visible=True) for breed in topk_breeds[:3]])
|
| 410 |
+
else:
|
| 411 |
+
explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset.")
|
| 412 |
+
|
| 413 |
+
final_explanation = "\n\n".join(explanations)
|
| 414 |
+
if buttons:
|
| 415 |
+
final_explanation += "\n\nClick on a button to view more information about the breed."
|
| 416 |
+
initial_state = {
|
| 417 |
+
"explanation": final_explanation,
|
| 418 |
+
"buttons": buttons,
|
| 419 |
+
"show_back": True,
|
| 420 |
+
"image": annotated_image,
|
| 421 |
+
"is_multi_dog": len(dogs) > 1,
|
| 422 |
+
"dogs_info": explanations
|
| 423 |
+
}
|
| 424 |
+
return final_explanation, annotated_image, buttons, gr.update(visible=True), initial_state
|
| 425 |
+
else:
|
| 426 |
+
initial_state = {
|
| 427 |
+
"explanation": final_explanation,
|
| 428 |
+
"buttons": [],
|
| 429 |
+
"show_back": False,
|
| 430 |
+
"image": annotated_image,
|
| 431 |
+
"is_multi_dog": len(dogs) > 1,
|
| 432 |
+
"dogs_info": explanations
|
| 433 |
+
}
|
| 434 |
+
return final_explanation, annotated_image, [], gr.update(visible=False), initial_state
|
| 435 |
+
|
| 436 |
+
except Exception as e:
|
| 437 |
+
error_msg = f"An error occurred: {str(e)}"
|
| 438 |
+
print(error_msg) # Add log output
|
| 439 |
+
return error_msg, None, [], gr.update(visible=False), None
|
| 440 |
|
| 441 |
def show_details(choice, previous_output, initial_state):
|
| 442 |
if not choice:
|
| 443 |
return previous_output, gr.update(visible=True), initial_state
|
| 444 |
|
| 445 |
try:
|
| 446 |
+
dog_num, breed = choice.split(": More about ")
|
| 447 |
description = get_dog_description(breed)
|
| 448 |
formatted_description = format_description(description, breed)
|
| 449 |
|
| 450 |
+
# Save current description and original button state
|
| 451 |
initial_state["current_description"] = formatted_description
|
| 452 |
initial_state["original_buttons"] = initial_state.get("buttons", [])
|
| 453 |
|
|
|
|
| 462 |
return (
|
| 463 |
state["explanation"],
|
| 464 |
state["image"],
|
| 465 |
+
buttons,
|
| 466 |
+
gr.update(visible=False), # Hide back button
|
|
|
|
|
|
|
| 467 |
state
|
| 468 |
)
|
| 469 |
|
|
|
|
| 477 |
|
| 478 |
output = gr.Markdown(label="Prediction Results")
|
| 479 |
|
| 480 |
+
button_group = gr.Group()
|
| 481 |
+
with button_group:
|
| 482 |
+
buttons = []
|
|
|
|
| 483 |
|
| 484 |
back_button = gr.Button("Back", visible=False)
|
| 485 |
|
|
|
|
| 488 |
input_image.change(
|
| 489 |
predict,
|
| 490 |
inputs=input_image,
|
| 491 |
+
outputs=[output, output_image, button_group, back_button, initial_state]
|
| 492 |
)
|
| 493 |
|
| 494 |
+
def update_buttons(buttons):
|
| 495 |
+
button_group.clear()
|
| 496 |
+
for btn in buttons:
|
| 497 |
+
button = gr.Button(btn.value)
|
| 498 |
+
button.click(
|
| 499 |
+
show_details,
|
| 500 |
+
inputs=[button, output, initial_state],
|
| 501 |
+
outputs=[output, back_button, initial_state]
|
| 502 |
+
)
|
| 503 |
+
buttons.append(button)
|
| 504 |
+
return button_group
|
| 505 |
|
| 506 |
back_button.click(
|
| 507 |
go_back,
|
| 508 |
inputs=[initial_state],
|
| 509 |
+
outputs=[output, output_image, button_group, back_button, initial_state]
|
| 510 |
)
|
| 511 |
|
| 512 |
gr.Examples(
|
|
|
|
| 517 |
gr.HTML('For more details on this project and other work, feel free to visit my GitHub <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog_Breed_Classifier">Dog Breed Classifier</a>')
|
| 518 |
|
| 519 |
if __name__ == "__main__":
|
| 520 |
+
iface.launch()
|
| 521 |
+
|
| 522 |
+
|