Spaces:
Running
on
Zero
Running
on
Zero
File size: 19,362 Bytes
4d1f920 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 |
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import numpy as np
from PIL import Image
from typing import Dict, List, Tuple, Optional, Any
import logging
class Places365Model:
"""
Places365 scene classification model wrapper for scene understanding integration.
Provides scene classification and scene attribute prediction capabilities.
"""
def __init__(self, model_name: str = 'resnet50_places365', device: Optional[str] = None):
"""
Initialize Places365 model with configurable architecture and device.
Args:
model_name: Model architecture name (默認 resnet50)
device: Target device for inference (auto-detected if None)
"""
self.logger = logging.getLogger(self.__class__.__name__)
# Device configuration with fallback logic
if device is None:
self.device = "cuda" if torch.cuda.is_available() else "cpu"
else:
self.device = device
self.model_name = model_name
self.model = None
self.scene_classes = []
self.scene_attributes = []
# Model configuration mapping
self.model_configs = {
'resnet18_places365': {
'arch': 'resnet18',
'num_classes': 365,
'url': 'http://places2.csail.mit.edu/models_places365/resnet18_places365.pth.tar'
},
'resnet50_places365': {
'arch': 'resnet50',
'num_classes': 365,
'url': 'http://places2.csail.mit.edu/models_places365/resnet50_places365.pth.tar'
},
'densenet161_places365': {
'arch': 'densenet161',
'num_classes': 365,
'url': 'http://places2.csail.mit.edu/models_places365/densenet161_places365.pth.tar'
}
}
self._load_model()
self._load_class_names()
self._setup_scene_mapping()
def _load_model(self):
"""載入與初始化 Places365 model"""
try:
if self.model_name not in self.model_configs:
raise ValueError(f"Unsupported model name: {self.model_name}")
config = self.model_configs[self.model_name]
# Import model architecture
if config['arch'].startswith('resnet'):
import torchvision.models as models
if config['arch'] == 'resnet18':
self.model = models.resnet18(num_classes=config['num_classes'])
elif config['arch'] == 'resnet50':
self.model = models.resnet50(num_classes=config['num_classes'])
elif config['arch'] == 'densenet161':
import torchvision.models as models
self.model = models.densenet161(num_classes=config['num_classes'])
# Load pretrained weights
checkpoint = torch.hub.load_state_dict_from_url(
config['url'],
map_location=self.device,
progress=True
)
# Handle different checkpoint formats
if 'state_dict' in checkpoint:
state_dict = checkpoint['state_dict']
# Remove 'module.' prefix if present
state_dict = {k.replace('module.', ''): v for k, v in state_dict.items()}
else:
state_dict = checkpoint
self.model.load_state_dict(state_dict)
self.model.to(self.device)
self.model.eval()
self.logger.info(f"Places365 model {self.model_name} loaded successfully on {self.device}")
except Exception as e:
self.logger.error(f"Error loading Places365 model: {str(e)}")
raise
def _load_class_names(self):
"""Load Places365 class names and scene attributes."""
try:
# Load scene class names (365 categories)
import urllib.request
class_url = 'https://raw.githubusercontent.com/csailvision/places365/master/categories_places365.txt'
class_file = urllib.request.urlopen(class_url)
self.scene_classes = []
for line in class_file:
class_name = line.decode('utf-8').strip().split(' ')[0][3:] # Remove /x/ prefix
self.scene_classes.append(class_name)
# Load scene attributes (optional, for enhanced description)
attr_url = 'https://raw.githubusercontent.com/csailvision/places365/master/labels_sunattribute.txt'
try:
attr_file = urllib.request.urlopen(attr_url)
self.scene_attributes = []
for line in attr_file:
attr_name = line.decode('utf-8').strip()
self.scene_attributes.append(attr_name)
except:
self.logger.warning("Scene attributes not loaded, continuing with basic classification")
self.scene_attributes = []
self.logger.info(f"Loaded {len(self.scene_classes)} scene classes and {len(self.scene_attributes)} attributes")
except Exception as e:
self.logger.error(f"Error loading class names: {str(e)}")
# Fallback to basic class names if download fails
self.scene_classes = [f"scene_class_{i}" for i in range(365)]
self.scene_attributes = []
def _setup_scene_mapping(self):
"""Setup mapping from Places365 classes to common scene types."""
# 建立Places365類別到通用場景類型的映射關係
self.scene_type_mapping = {
# Indoor scenes
'living_room': 'living_room',
'bedroom': 'bedroom',
'kitchen': 'kitchen',
'dining_room': 'dining_area',
'bathroom': 'bathroom',
'office': 'office_workspace',
'conference_room': 'office_workspace',
'classroom': 'educational_setting',
'library': 'library',
'restaurant': 'restaurant',
'cafe': 'cafe',
'bar': 'bar',
'hotel_room': 'hotel_room',
'hospital_room': 'medical_facility',
'gym': 'gym',
'supermarket': 'retail_store',
'clothing_store': 'retail_store',
# Outdoor urban scenes
'street': 'city_street',
'crosswalk': 'intersection',
'parking_lot': 'parking_lot',
'gas_station': 'gas_station',
'bus_station': 'bus_stop',
'train_station': 'train_station',
'airport_terminal': 'airport',
'subway_station': 'subway_station',
'bridge': 'bridge',
'highway': 'highway',
'downtown': 'commercial_district',
'shopping_mall': 'shopping_mall',
# Natural outdoor scenes
'park': 'park_area',
'beach': 'beach',
'forest': 'forest',
'mountain': 'mountain',
'lake': 'lake',
'river': 'river',
'ocean': 'ocean',
'desert': 'desert',
'field': 'field',
'garden': 'garden',
# Landmark and tourist areas
'castle': 'historical_monument',
'palace': 'historical_monument',
'temple': 'temple',
'church': 'church',
'mosque': 'mosque',
'museum': 'museum',
'art_gallery': 'art_gallery',
'tower': 'tourist_landmark',
'monument': 'historical_monument',
# Sports and entertainment
'stadium': 'stadium',
'basketball_court': 'sports_field',
'tennis_court': 'sports_field',
'swimming_pool': 'swimming_pool',
'playground': 'playground',
'amusement_park': 'amusement_park',
'theater': 'theater',
'concert_hall': 'concert_hall',
# Transportation
'airplane_cabin': 'airplane_cabin',
'train_interior': 'train_interior',
'car_interior': 'car_interior',
# Construction and industrial
'construction_site': 'construction_site',
'factory': 'factory',
'warehouse': 'warehouse'
}
# Indoor/outdoor classification helper
self.indoor_classes = {
'living_room', 'bedroom', 'kitchen', 'dining_room', 'bathroom', 'office',
'conference_room', 'classroom', 'library', 'restaurant', 'cafe', 'bar',
'hotel_room', 'hospital_room', 'gym', 'supermarket', 'clothing_store',
'airplane_cabin', 'train_interior', 'car_interior', 'theater', 'concert_hall',
'museum', 'art_gallery', 'shopping_mall'
}
self.outdoor_classes = {
'street', 'crosswalk', 'parking_lot', 'gas_station', 'bus_station',
'train_station', 'airport_terminal', 'bridge', 'highway', 'downtown',
'park', 'beach', 'forest', 'mountain', 'lake', 'river', 'ocean',
'desert', 'field', 'garden', 'stadium', 'basketball_court', 'tennis_court',
'swimming_pool', 'playground', 'amusement_park', 'construction_site',
'factory', 'warehouse', 'castle', 'palace', 'temple', 'church', 'mosque',
'tower', 'monument'
}
def preprocess(self, image_pil: Image.Image) -> torch.Tensor:
"""
Preprocess PIL image for Places365 model inference.
Args:
image_pil: Input PIL image
Returns:
torch.Tensor: Preprocessed image tensor
"""
# Places365 standard preprocessing
transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# Convert to RGB if needed
if image_pil.mode != 'RGB':
image_pil = image_pil.convert('RGB')
# Apply preprocessing
input_tensor = transform(image_pil).unsqueeze(0)
return input_tensor.to(self.device)
def predict(self, image_pil: Image.Image) -> Dict[str, Any]:
"""
Predict scene classification and attributes for input image.
Args:
image_pil: Input PIL image
Returns:
Dict containing scene predictions and confidence scores
"""
try:
# Preprocess image
input_tensor = self.preprocess(image_pil)
# Model inference
with torch.no_grad():
outputs = self.model(input_tensor)
probabilities = torch.nn.functional.softmax(outputs, dim=1)
# 返回最有可能的項目
top_k = min(10, len(self.scene_classes)) # Configurable top-k
top_probs, top_indices = torch.topk(probabilities, top_k, dim=1)
# Extract results
top_probs = top_probs.cpu().numpy()[0]
top_indices = top_indices.cpu().numpy()[0]
# Build prediction results
predictions = []
for i in range(top_k):
class_idx = top_indices[i]
confidence = float(top_probs[i])
scene_class = self.scene_classes[class_idx]
predictions.append({
'class_name': scene_class,
'class_index': class_idx,
'confidence': confidence
})
# Get primary prediction
primary_prediction = predictions[0]
primary_class = primary_prediction['class_name']
# 確認是 indoor/outdoor
is_indoor = self._classify_indoor_outdoor(primary_class)
# Map to common scene type
mapped_scene_type = self._map_places365_to_scene_types(primary_class)
# Determine scene attributes (basic inference based on class)
scene_attributes = self._infer_scene_attributes(primary_class)
result = {
'scene_label': primary_class,
'mapped_scene_type': mapped_scene_type,
'confidence': primary_prediction['confidence'],
'is_indoor': is_indoor,
'attributes': scene_attributes,
'top_predictions': predictions,
'all_probabilities': probabilities.cpu().numpy()[0].tolist()
}
return result
except Exception as e:
self.logger.error(f"Error in Places365 prediction: {str(e)}")
return {
'scene_label': 'unknown',
'mapped_scene_type': 'unknown',
'confidence': 0.0,
'is_indoor': None,
'attributes': [],
'top_predictions': [],
'error': str(e)
}
def _classify_indoor_outdoor(self, scene_class: str) -> Optional[bool]:
"""
Classify if scene is indoor or outdoor based on Places365 class.
Args:
scene_class: Places365 scene class name
Returns:
bool or None: True for indoor, False for outdoor, None if uncertain
"""
if scene_class in self.indoor_classes:
return True
elif scene_class in self.outdoor_classes:
return False
else:
# For ambiguous classes, use heuristics
indoor_keywords = ['room', 'office', 'store', 'shop', 'hall', 'interior', 'indoor']
outdoor_keywords = ['street', 'road', 'park', 'field', 'beach', 'mountain', 'outdoor']
scene_lower = scene_class.lower()
if any(keyword in scene_lower for keyword in indoor_keywords):
return True
elif any(keyword in scene_lower for keyword in outdoor_keywords):
return False
else:
return None
def _map_places365_to_scene_types(self, places365_class: str) -> str:
"""
Map Places365 class to common scene type used by the system.
Args:
places365_class: Places365 scene class name
Returns:
str: Mapped scene type
"""
# Direct mapping lookup
if places365_class in self.scene_type_mapping:
return self.scene_type_mapping[places365_class]
# Fuzzy matching for similar classes
places365_lower = places365_class.lower()
# Indoor fuzzy matching
if any(keyword in places365_lower for keyword in ['living', 'bedroom', 'kitchen']):
return 'general_indoor_space'
elif any(keyword in places365_lower for keyword in ['office', 'conference', 'meeting']):
return 'office_workspace'
elif any(keyword in places365_lower for keyword in ['dining', 'restaurant', 'cafe']):
return 'dining_area'
elif any(keyword in places365_lower for keyword in ['store', 'shop', 'market']):
return 'retail_store'
elif any(keyword in places365_lower for keyword in ['school', 'class', 'library']):
return 'educational_setting'
# Outdoor fuzzy matching
elif any(keyword in places365_lower for keyword in ['street', 'road', 'crosswalk']):
return 'city_street'
elif any(keyword in places365_lower for keyword in ['park', 'garden', 'plaza']):
return 'park_area'
elif any(keyword in places365_lower for keyword in ['beach', 'ocean', 'lake']):
return 'beach'
elif any(keyword in places365_lower for keyword in ['mountain', 'forest', 'desert']):
return 'natural_outdoor_area'
elif any(keyword in places365_lower for keyword in ['parking', 'garage']):
return 'parking_lot'
elif any(keyword in places365_lower for keyword in ['station', 'terminal', 'airport']):
return 'transportation_hub'
# Landmark fuzzy matching
elif any(keyword in places365_lower for keyword in ['castle', 'palace', 'monument', 'temple']):
return 'historical_monument'
elif any(keyword in places365_lower for keyword in ['tower', 'landmark']):
return 'tourist_landmark'
elif any(keyword in places365_lower for keyword in ['museum', 'gallery']):
return 'cultural_venue'
# Default fallback based on indoor/outdoor
is_indoor = self._classify_indoor_outdoor(places365_class)
if is_indoor is True:
return 'general_indoor_space'
elif is_indoor is False:
return 'generic_street_view'
else:
return 'unknown'
def _infer_scene_attributes(self, scene_class: str) -> List[str]:
"""
Infer basic scene attributes from Places365 class.
Args:
scene_class: Places365 scene class name
Returns:
List[str]: Inferred scene attributes
"""
attributes = []
scene_lower = scene_class.lower()
# Lighting attributes
if any(keyword in scene_lower for keyword in ['outdoor', 'street', 'park', 'beach']):
attributes.append('natural_lighting')
elif any(keyword in scene_lower for keyword in ['indoor', 'room', 'office']):
attributes.append('artificial_lighting')
# Functional attributes
if any(keyword in scene_lower for keyword in ['commercial', 'store', 'shop', 'restaurant']):
attributes.append('commercial')
elif any(keyword in scene_lower for keyword in ['residential', 'home', 'living', 'bedroom']):
attributes.append('residential')
elif any(keyword in scene_lower for keyword in ['office', 'conference', 'meeting']):
attributes.append('workplace')
elif any(keyword in scene_lower for keyword in ['recreation', 'park', 'playground', 'stadium']):
attributes.append('recreational')
elif any(keyword in scene_lower for keyword in ['educational', 'school', 'library', 'classroom']):
attributes.append('educational')
# Spatial attributes
if any(keyword in scene_lower for keyword in ['open', 'field', 'plaza', 'stadium']):
attributes.append('open_space')
elif any(keyword in scene_lower for keyword in ['enclosed', 'room', 'interior']):
attributes.append('enclosed_space')
return attributes
def get_scene_probabilities(self, image_pil: Image.Image) -> Dict[str, float]:
"""
Get probability distribution over all scene classes.
Args:
image_pil: Input PIL image
Returns:
Dict mapping scene class names to probabilities
"""
try:
input_tensor = self.preprocess(image_pil)
with torch.no_grad():
outputs = self.model(input_tensor)
probabilities = torch.nn.functional.softmax(outputs, dim=1)
probs = probabilities.cpu().numpy()[0]
return {
self.scene_classes[i]: float(probs[i])
for i in range(len(self.scene_classes))
}
except Exception as e:
self.logger.error(f"Error getting scene probabilities: {str(e)}")
return {}
|