File size: 112,451 Bytes
3172319
 
 
ca35826
3172319
 
 
 
 
4d1f920
 
e83cc4c
3172319
 
4d1f920
 
3172319
 
 
 
 
 
4d1f920
 
 
 
 
 
 
3172319
 
 
 
 
4d1f920
 
3172319
4d1f920
 
 
3172319
4d1f920
 
 
 
3172319
4d1f920
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3172319
e83cc4c
4d1f920
 
e83cc4c
4d1f920
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e83cc4c
3172319
4d1f920
 
 
 
 
 
 
 
 
 
3172319
4d1f920
3172319
 
 
 
 
 
4d1f920
 
 
 
3172319
 
 
4d1f920
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3172319
4d1f920
 
 
 
 
 
 
 
 
 
3172319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d1f920
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3172319
4d1f920
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3172319
 
 
4d1f920
 
 
 
 
3172319
4d1f920
3172319
4d1f920
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e83cc4c
4d1f920
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e83cc4c
4d1f920
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e83cc4c
4d1f920
 
 
 
e83cc4c
 
 
 
 
4d1f920
e83cc4c
 
4d1f920
 
 
 
 
 
 
 
 
 
 
 
 
e83cc4c
3172319
4d1f920
 
 
 
3172319
 
 
 
 
4d1f920
3172319
 
4d1f920
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3172319
4d1f920
 
3172319
4d1f920
3172319
 
 
 
4d1f920
3172319
4d1f920
 
 
 
3172319
 
4d1f920
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3172319
4d1f920
 
3172319
4d1f920
 
 
 
 
3172319
4d1f920
 
 
 
3172319
4d1f920
 
3172319
4d1f920
 
 
3172319
4d1f920
 
 
 
3172319
4d1f920
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3172319
4d1f920
 
 
 
3172319
4d1f920
 
3172319
4d1f920
 
 
 
3172319
4d1f920
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3172319
 
4d1f920
 
e83cc4c
4d1f920
 
 
 
e83cc4c
4d1f920
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e83cc4c
4d1f920
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e83cc4c
4d1f920
e83cc4c
4d1f920
 
 
e83cc4c
4d1f920
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3172319
 
4d1f920
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3172319
 
4d1f920
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3172319
4d1f920
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3172319
 
4d1f920
 
3172319
4d1f920
 
 
 
3172319
4d1f920
3172319
 
4d1f920
 
 
 
 
 
 
 
 
3172319
 
4d1f920
3172319
4d1f920
3172319
4d1f920
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3172319
 
4d1f920
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3172319
4d1f920
 
 
3172319
4d1f920
 
 
 
 
 
 
3172319
 
 
 
 
 
 
 
 
 
 
 
4d1f920
3172319
 
 
4d1f920
3172319
 
4d1f920
 
 
 
 
 
 
 
3172319
4d1f920
 
 
3172319
4d1f920
 
 
 
 
 
 
 
 
3172319
4d1f920
3172319
4d1f920
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3172319
 
4d1f920
 
 
 
 
 
3172319
4d1f920
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3172319
 
4d1f920
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
import os
import numpy as np
from typing import Dict, List, Tuple, Any, Optional
from PIL import Image

from spatial_analyzer import SpatialAnalyzer
from scene_description import SceneDescriptor
from enhance_scene_describer import EnhancedSceneDescriber
from clip_analyzer import CLIPAnalyzer
from landmark_activities import LANDMARK_ACTIVITIES
from clip_zero_shot_classifier import CLIPZeroShotClassifier
from llm_enhancer import LLMEnhancer
from scene_type import SCENE_TYPES
from object_categories import OBJECT_CATEGORIES
from landmark_data import ALL_LANDMARKS


class SceneAnalyzer:
    """
    Core class for scene analysis and understanding based on object detection results.
    Analyzes detected objects, their relationships, and infers the scene type.
    """
    EVERYDAY_SCENE_TYPE_KEYS = [
        "general_indoor_space", "generic_street_view",
        "desk_area_workspace", "outdoor_gathering_spot",
        "kitchen_counter_or_utility_area"
    ]

    def __init__(self, class_names: Dict[int, str] = None, use_llm: bool = True, use_clip: bool = True, enable_landmark=True, llm_model_path: str = None):
        """
        Initialize the scene analyzer with optional class name mappings.
        Args:
            class_names: Dictionary mapping class IDs to class names (optional)
        """
        try:
            self.class_names = class_names

            self.use_clip = use_clip
            self.use_landmark_detection = enable_landmark
            self.enable_landmark = enable_landmark

            # 初始化基本屬性
            self.LANDMARK_ACTIVITIES = {}
            self.SCENE_TYPES = {}
            self.OBJECT_CATEGORIES = {}

            # 嘗試加載資料
            try:
                self.LANDMARK_ACTIVITIES = LANDMARK_ACTIVITIES
                print("Loaded LANDMARK_ACTIVITIES successfully")
            except Exception as e:
                print(f"Warning: Failed to load LANDMARK_ACTIVITIES: {e}")

            try:
                self.SCENE_TYPES = SCENE_TYPES
                print("Loaded SCENE_TYPES successfully")
            except Exception as e:
                print(f"Warning: Failed to load SCENE_TYPES: {e}")

            try:
                self.OBJECT_CATEGORIES = OBJECT_CATEGORIES
                print("Loaded OBJECT_CATEGORIES successfully")
            except Exception as e:
                print(f"Warning: Failed to load OBJECT_CATEGORIES: {e}")

            # 初始化其他組件
            self.spatial_analyzer = None
            self.descriptor = None
            self.scene_describer = None

            try:
                self.spatial_analyzer = SpatialAnalyzer(class_names=class_names, object_categories=self.OBJECT_CATEGORIES)
                print("Initialized SpatialAnalyzer successfully")
            except Exception as e:
                print(f"Error initializing SpatialAnalyzer: {e}")
                import traceback
                traceback.print_exc()

            try:
                self.descriptor = SceneDescriptor(scene_types=self.SCENE_TYPES, object_categories=self.OBJECT_CATEGORIES)
                print("Initialized SceneDescriptor successfully")
            except Exception as e:
                print(f"Error initializing SceneDescriptor: {e}")
                import traceback
                traceback.print_exc()

            try:
                if self.spatial_analyzer:
                    self.scene_describer = EnhancedSceneDescriber(scene_types=self.SCENE_TYPES, spatial_analyzer_instance=self.spatial_analyzer)
                    print("Initialized EnhancedSceneDescriber successfully")
                else:
                    print("Warning: Cannot initialize EnhancedSceneDescriber without SpatialAnalyzer")
            except Exception as e:
                print(f"Error initializing EnhancedSceneDescriber: {e}")
                import traceback
                traceback.print_exc()

            # 初始化 CLIP 分析器
            if self.use_clip:
                try:
                    self.clip_analyzer = CLIPAnalyzer()

                    try:
                        # 嘗試使用已加載的CLIP模型實例
                        if hasattr(self.clip_analyzer, 'get_clip_instance'):
                            model, preprocess, device = self.clip_analyzer.get_clip_instance()
                            self.landmark_classifier = CLIPZeroShotClassifier(device=device)
                            print("Initialized landmark classifier with shared CLIP model")
                        else:
                            self.landmark_classifier = CLIPZeroShotClassifier()

                        # 配置地標檢測器
                        self.landmark_classifier.set_batch_size(8)  # 設置合適的批處理大小
                        self.landmark_classifier.adjust_confidence_threshold("full_image", 0.8)  # 整張圖像的閾值要求
                        self.landmark_classifier.adjust_confidence_threshold("distant", 0.65)  # 遠景地標的閾值要求

                        self.use_landmark_detection = True
                        print("Landmark detection enabled with optimized settings")

                    except (ImportError, Exception) as e:
                        print(f"Warning: Could not initialize landmark classifier: {e}")
                        self.use_landmark_detection = False

                except Exception as e:
                    print(f"Warning: Could not initialize CLIP analyzer: {e}")
                    print("Scene analysis will proceed without CLIP. Install CLIP with 'pip install clip' for enhanced scene understanding.")
                    self.use_clip = False

            # 初始化LLM Model
            self.use_llm = use_llm
            if use_llm:
                try:
                    # from llm_enhancer import LLMEnhancer
                    self.llm_enhancer = LLMEnhancer(model_path=llm_model_path)
                    print(f"LLM enhancer initialized successfully.")
                except Exception as e:
                    print(f"Warning: Could not initialize LLM enhancer: {e}")
                    print("Scene analysis will proceed without LLM. Make sure required packages are installed.")
                    self.use_llm = False

        except Exception as e:
            print(f"Critical error during SceneAnalyzer initialization: {e}")
            import traceback
            traceback.print_exc()
            raise


    def generate_scene_description(self,
                             scene_type: str,
                             detected_objects: List[Dict],
                             confidence: float,
                             lighting_info: Optional[Dict] = None,
                             functional_zones: Optional[Dict] = None,
                             enable_landmark: bool = True,
                             scene_scores: Optional[Dict] = None,
                             spatial_analysis: Optional[Dict] = None,
                             image_dimensions: Optional[Tuple[int, int]] = None
                             ):
        """
        生成場景描述,並將所有必要的上下文傳遞給底層的描述器。
        Args:
            scene_type: 識別的場景類型
            detected_objects: 檢測到的物體列表
            confidence: 場景分類置信度
            lighting_info: 照明條件信息(可選)
            functional_zones: 功能區域信息(可選)
            enable_landmark: 是否啟用地標描述(可選)
            scene_scores: 場景分數(可選)
            spatial_analysis: 空間分析結果(可選)
            image_dimensions: 圖像尺寸 (寬, 高)(可選)
        Returns:
            str: 生成的場景描述
        """

        # 轉換 functional_zones 從 Dict 到 List[str],並過濾技術術語
        functional_zones_list = []
        if functional_zones and isinstance(functional_zones, dict):
            # 過濾掉技術術語,只保留有意義的描述
            filtered_zones = {k: v for k, v in functional_zones.items()
                            if not k.endswith('_zone') or k in ['dining_zone', 'seating_zone', 'work_zone']}
            functional_zones_list = [v.get('description', k) for k, v in filtered_zones.items()
                                if isinstance(v, dict) and v.get('description')]
        elif functional_zones and isinstance(functional_zones, list):
            # 過濾列表中的技術術語
            functional_zones_list = [zone for zone in functional_zones
                                if not zone.endswith('_zone') or 'area' in zone]

        # 生成詳細的物體統計信息
        object_statistics = {}
        for obj in detected_objects:
            class_name = obj.get("class_name", "unknown")
            if class_name not in object_statistics:
                object_statistics[class_name] = {
                    "count": 0,
                    "avg_confidence": 0.0,
                    "max_confidence": 0.0,
                    "instances": []
                }

            stats = object_statistics[class_name]
            stats["count"] += 1
            stats["instances"].append(obj)
            stats["max_confidence"] = max(stats["max_confidence"], obj.get("confidence", 0.0))

        # 計算平均信心度
        for class_name, stats in object_statistics.items():
            if stats["count"] > 0:
                total_conf = sum(inst.get("confidence", 0.0) for inst in stats["instances"])
                stats["avg_confidence"] = total_conf / stats["count"]

        return self.scene_describer.generate_description(
            scene_type=scene_type,
            detected_objects=detected_objects,
            confidence=confidence,
            lighting_info=lighting_info,
            functional_zones=functional_zones_list,
            enable_landmark=enable_landmark,
            scene_scores=scene_scores,
            spatial_analysis=spatial_analysis,
            image_dimensions=image_dimensions,
            object_statistics=object_statistics
        )


    def _define_image_regions(self):
        """Define regions of the image for spatial analysis (3x3 grid)"""
        self.regions = {
            "top_left": (0, 0, 1/3, 1/3),
            "top_center": (1/3, 0, 2/3, 1/3),
            "top_right": (2/3, 0, 1, 1/3),
            "middle_left": (0, 1/3, 1/3, 2/3),
            "middle_center": (1/3, 1/3, 2/3, 2/3),
            "middle_right": (2/3, 1/3, 1, 2/3),
            "bottom_left": (0, 2/3, 1/3, 1),
            "bottom_center": (1/3, 2/3, 2/3, 1),
            "bottom_right": (2/3, 2/3, 1, 1)
        }

    def _get_alternative_scene_type(self, landmark_scene_type, detected_objects, scene_scores):
        """
        為地標場景類型選擇適合的替代類型

        Args:
            landmark_scene_type: 原始地標場景類型
            detected_objects: 檢測到的物體列表
            scene_scores: 所有場景類型的分數

        Returns:
            str: 適合的替代場景類型
        """
        # 1. 嘗試從現有場景分數中找出第二高的非地標場景
        landmark_types = {"tourist_landmark", "natural_landmark", "historical_monument"}
        alternative_scores = {k: v for k, v in scene_scores.items() if k not in landmark_types and v > 0.2}

        if alternative_scores:
            # 返回分數最高的非地標場景類型
            return max(alternative_scores.items(), key=lambda x: x[1])[0]

        # 2. 基於物體組合推斷場景類型
        object_counts = {}
        for obj in detected_objects:
            class_name = obj.get("class_name", "")
            if class_name not in object_counts:
                object_counts[class_name] = 0
            object_counts[class_name] += 1

        # 根據物體組合決定場景類型
        if "car" in object_counts or "truck" in object_counts or "bus" in object_counts:
            # 有車輛,可能是街道或交叉路口
            if "traffic light" in object_counts or "stop sign" in object_counts:
                return "intersection"
            else:
                return "city_street"

        if "building" in object_counts and object_counts.get("person", 0) > 0:
            # 有建築物和人,可能是商業區
            return "commercial_district"

        if object_counts.get("person", 0) > 3:
            # 多個行人,可能是行人區
            return "pedestrian_area"

        if "bench" in object_counts or "potted plant" in object_counts:
            # 有長椅或盆栽,可能是公園區域
            return "park_area"

        # 3. 根據原始地標場景類型選擇合適的替代場景
        if landmark_scene_type == "natural_landmark":
            return "outdoor_natural_area"
        elif landmark_scene_type == "historical_monument":
            return "urban_architecture"

        # 默認回退到城市街道
        return "city_street"

    def analyze(self, detection_result: Any, lighting_info: Optional[Dict] = None, class_confidence_threshold: float = 0.25, scene_confidence_threshold: float = 0.6, enable_landmark=True, places365_info: Optional[Dict] = None) -> Dict:
        """
        Analyze detection results to determine scene type and provide understanding.
        Args:
            detection_result: Detection result from YOLOv8 or similar.
            lighting_info: Optional lighting condition analysis results.
            class_confidence_threshold: Minimum confidence to consider an object.
            scene_confidence_threshold: Minimum confidence to determine a scene.
            enable_landmark: Whether to enable landmark detection and recognition for this run.
        Returns:
            Dictionary with scene analysis results.
        """
        current_run_enable_landmark = enable_landmark
        print(f"DIAGNOSTIC (SceneAnalyzer.analyze): Called with current_run_enable_landmark={current_run_enable_landmark}")
        print(f"DEBUG: SceneAnalyzer received lighting_info type: {type(lighting_info)}")
        print(f"DEBUG: SceneAnalyzer lighting_info source: {lighting_info.get('source', 'unknown') if isinstance(lighting_info, dict) else 'not_dict'}")

        # Log Places365 information if available
        if places365_info:
            print(f"DIAGNOSTIC: Places365 info received - scene: {places365_info.get('scene_label', 'unknown')}, "
                f"mapped: {places365_info.get('mapped_scene_type', 'unknown')}, "
                f"confidence: {places365_info.get('confidence', 0.0):.3f}")

        # Sync enable_landmark status with child components for this analysis run
        # Assuming these components exist and have an 'enable_landmark' attribute
        for component_name in ['scene_describer', 'clip_analyzer', 'landmark_classifier']:
            if hasattr(self, component_name):
                component = getattr(self, component_name)
                if component and hasattr(component, 'enable_landmark'):
                    component.enable_landmark = current_run_enable_landmark

        self.enable_landmark = current_run_enable_landmark # Instance's general state for this run
        if hasattr(self, 'use_landmark_detection'):
            self.use_landmark_detection = current_run_enable_landmark


        original_image_pil = None
        image_dims_val = None # Will be (width, height)

        if detection_result is not None and hasattr(detection_result, 'orig_img') and detection_result.orig_img is not None:
            if isinstance(detection_result.orig_img, np.ndarray):
                try:
                    img_array = detection_result.orig_img
                    if img_array.ndim == 3 and img_array.shape[2] == 4: # RGBA
                        img_array = img_array[:, :, :3] # Convert to RGB
                    if img_array.ndim == 2 : # Grayscale
                         original_image_pil = Image.fromarray(img_array).convert("RGB")
                    else: # Assuming RGB or BGR (PIL handles BGR->RGB on fromarray if mode not specified, but explicit is better if source is cv2 BGR)
                         original_image_pil = Image.fromarray(img_array)

                    if original_image_pil.mode == 'BGR': # Explicitly convert BGR from OpenCV to RGB for PIL
                        original_image_pil = original_image_pil.convert('RGB')

                    image_dims_val = (original_image_pil.width, original_image_pil.height)
                except Exception as e:
                    print(f"Warning: Error converting NumPy orig_img to PIL: {e}")
            elif hasattr(detection_result.orig_img, 'size') and callable(getattr(detection_result.orig_img, 'convert', None)):
                original_image_pil = detection_result.orig_img.copy().convert("RGB") # Ensure RGB
                image_dims_val = original_image_pil.size
            else:
                print(f"Warning: detection_result.orig_img (type: {type(detection_result.orig_img)}) is not a recognized NumPy array or PIL Image.")
        else:
            print("Warning: detection_result.orig_img not available. Image-based analysis will be limited.")

        # Handling cases with no YOLO detections (or no boxes attribute)
        no_yolo_detections = (detection_result is None or
                            not hasattr(detection_result, 'boxes') or
                            not hasattr(detection_result.boxes, 'xyxy') or
                            len(detection_result.boxes.xyxy) == 0)

        if no_yolo_detections:
            tried_landmark_detection = False
            landmark_detection_result = None

            if original_image_pil and self.use_clip and current_run_enable_landmark:
                if not hasattr(self, 'landmark_classifier') and hasattr(self, 'clip_analyzer'):
                    try:
                        if hasattr(self.clip_analyzer, 'get_clip_instance'):
                            model, preprocess, device = self.clip_analyzer.get_clip_instance()
                            self.landmark_classifier = CLIPZeroShotClassifier(device=device)
                            print("Initialized landmark classifier with shared CLIP model")
                        else:
                            self.landmark_classifier = CLIPZeroShotClassifier()
                        print("Created landmark classifier on demand for no YOLO detection path")
                    except Exception as e:
                        print(f"Warning: Could not initialize landmark classifier: {e}")

                # 地標搜索
                if hasattr(self, 'landmark_classifier'):
                    try:
                        tried_landmark_detection = True
                        print("Attempting landmark detection with no YOLO boxes")
                        landmark_results_no_yolo = self.landmark_classifier.intelligent_landmark_search(
                            original_image_pil, yolo_boxes=None, base_threshold=0.2  # 略微降低閾值,提高靈敏度
                        )

                        # 確保在無地標場景時返回有效結果
                        if landmark_results_no_yolo is None:
                            landmark_results_no_yolo = {"is_landmark_scene": False, "detected_landmarks": []}

                        if landmark_results_no_yolo and landmark_results_no_yolo.get("is_landmark_scene", False):
                            primary_landmark_no_yolo = landmark_results_no_yolo.get("primary_landmark")

                            # 放寬閾值條件,以便捕獲更多潛在地標
                            if primary_landmark_no_yolo and primary_landmark_no_yolo.get("confidence", 0) > 0.25:  # 降低閾值
                                landmark_detection_result = True
                                detected_objects_from_landmarks_list = []
                                w_img_no_yolo, h_img_no_yolo = image_dims_val if image_dims_val else (1,1)

                                for lm_info_item in landmark_results_no_yolo.get("detected_landmarks", []):
                                    if lm_info_item.get("confidence", 0) > 0.25:  # 降低閾值與上面保持一致
                                        # 安全獲取 box 值,避免索引錯誤
                                        box = lm_info_item.get("box", [0, 0, w_img_no_yolo, h_img_no_yolo])
                                        # 確保 box 包含至少 4 個元素
                                        if len(box) < 4:
                                            box = [0, 0, w_img_no_yolo, h_img_no_yolo]

                                        # 計算中心點和標準化坐標
                                        center_x, center_y = (box[0] + box[2]) / 2, (box[1] + box[3]) / 2
                                        norm_cx = center_x / w_img_no_yolo if w_img_no_yolo > 0 else 0.5
                                        norm_cy = center_y / h_img_no_yolo if h_img_no_yolo > 0 else 0.5

                                        # 決定地標類型
                                        landmark_type = "architectural"  # 預設類型
                                        landmark_id = lm_info_item.get("landmark_id", "")

                                        if hasattr(self.landmark_classifier, '_determine_landmark_type') and landmark_id:
                                            try:
                                                landmark_type = self.landmark_classifier._determine_landmark_type(landmark_id)
                                            except Exception as e:
                                                print(f"Error determining landmark type: {e}")
                                        else:
                                            # 使用簡單的基於 ID 的啟發式方法推斷類型
                                            landmark_id_lower = landmark_id.lower() if isinstance(landmark_id, str) else ""
                                            if "natural" in landmark_id_lower or any(term in landmark_id_lower for term in ["mountain", "waterfall", "canyon", "lake"]):
                                                landmark_type = "natural"
                                            elif "monument" in landmark_id_lower or "memorial" in landmark_id_lower or "historical" in landmark_id_lower:
                                                landmark_type = "monument"

                                        # 決定區域位置
                                        region = "center"  # 預設值
                                        if hasattr(self, 'spatial_analyzer') and hasattr(self.spatial_analyzer, '_determine_region'):
                                            try:
                                                region = self.spatial_analyzer._determine_region(norm_cx, norm_cy)
                                            except Exception as e:
                                                print(f"Error determining region: {e}")

                                        # 創建地標物體
                                        landmark_obj = {
                                            "class_id": lm_info_item.get("landmark_id", f"LM_{lm_info_item.get('landmark_name','unk')}")[:15],
                                            "class_name": lm_info_item.get("landmark_name", "Unknown Landmark"),
                                            "confidence": lm_info_item.get("confidence", 0.0),
                                            "box": box,
                                            "center": (center_x, center_y),
                                            "normalized_center": (norm_cx, norm_cy),
                                            "size": (box[2] - box[0], box[3] - box[1]),
                                            "normalized_size": (
                                                (box[2] - box[0])/(w_img_no_yolo if w_img_no_yolo>0 else 1),
                                                (box[3] - box[1])/(h_img_no_yolo if h_img_no_yolo>0 else 1)
                                            ),
                                            "area": (box[2] - box[0]) * (box[3] - box[1]),
                                            "normalized_area": (
                                                (box[2] - box[0]) * (box[3] - box[1])
                                            ) / ((w_img_no_yolo*h_img_no_yolo) if w_img_no_yolo*h_img_no_yolo >0 else 1),
                                            "is_landmark": True,
                                            "landmark_id": landmark_id,
                                            "location": lm_info_item.get("location", "Unknown Location"),
                                            "region": region,
                                            "year_built": lm_info_item.get("year_built", ""),
                                            "architectural_style": lm_info_item.get("architectural_style", ""),
                                            "significance": lm_info_item.get("significance", ""),
                                            "landmark_type": landmark_type
                                        }
                                        detected_objects_from_landmarks_list.append(landmark_obj)

                                if detected_objects_from_landmarks_list:
                                    # 設定場景類型
                                    best_scene_val_no_yolo = "tourist_landmark"  # 預設
                                    if primary_landmark_no_yolo:
                                        try:
                                            lm_type_no_yolo = primary_landmark_no_yolo.get("landmark_type", "architectural")
                                            if lm_type_no_yolo and "natural" in lm_type_no_yolo.lower():
                                                best_scene_val_no_yolo = "natural_landmark"
                                            elif lm_type_no_yolo and ("historical" in lm_type_no_yolo.lower() or "monument" in lm_type_no_yolo.lower()):
                                                best_scene_val_no_yolo = "historical_monument"
                                        except Exception as e:
                                            print(f"Error determining scene type from landmark type: {e}")

                                    # 確保場景類型有效
                                    if not hasattr(self, 'SCENE_TYPES') or best_scene_val_no_yolo not in self.SCENE_TYPES:
                                        best_scene_val_no_yolo = "tourist_landmark"  # 預設場景類型

                                    # 設定置信度
                                    scene_confidence_no_yolo = primary_landmark_no_yolo.get("confidence", 0.0) if primary_landmark_no_yolo else 0.0

                                    # 分析空間區域
                                    region_analysis_for_lm_desc = {}
                                    if hasattr(self, 'spatial_analyzer') and hasattr(self.spatial_analyzer, '_analyze_regions'):
                                        try:
                                            region_analysis_for_lm_desc = self.spatial_analyzer._analyze_regions(detected_objects_from_landmarks_list)
                                        except Exception as e:
                                            print(f"Error analyzing regions: {e}")

                                    # 獲取功能區
                                    f_zones_no_yolo = {}
                                    if hasattr(self, 'spatial_analyzer') and hasattr(self.spatial_analyzer, '_identify_landmark_zones'):
                                        try:
                                            f_zones_no_yolo = self.spatial_analyzer._identify_landmark_zones(detected_objects_from_landmarks_list)
                                        except Exception as e:
                                            print(f"Error identifying landmark zones: {e}")

                                    # 生成場景描述
                                    scene_desc_no_yolo = f"A {best_scene_val_no_yolo} scene."  # 預設描述
                                    if hasattr(self, 'scene_describer') and hasattr(self.scene_describer, 'generate_description'):
                                        try:
                                            scene_desc_no_yolo = self.scene_describer.generate_description(
                                                scene_type=best_scene_val_no_yolo,
                                                detected_objects=detected_objects_from_landmarks_list,
                                                confidence=scene_confidence_no_yolo,
                                                lighting_info=lighting_info,
                                                functional_zones=list(f_zones_no_yolo.keys()) if f_zones_no_yolo else [],
                                                enable_landmark=True,
                                                scene_scores={best_scene_val_no_yolo: scene_confidence_no_yolo},
                                                spatial_analysis=region_analysis_for_lm_desc,
                                                image_dimensions=image_dims_val
                                            )

                                        except Exception as e:
                                            print(f"Error generating scene description: {e}")


                                    # 使用 LLM 增強描述
                                    enhanced_desc_no_yolo = scene_desc_no_yolo
                                    if self.use_llm and hasattr(self, 'llm_enhancer') and hasattr(self.llm_enhancer, 'enhance_description'):
                                        try:
                                            # 準備用於 LLM 增強器的數據
                                            prominent_objects_detail = ""
                                            if hasattr(self, 'scene_describer') and hasattr(self.scene_describer, '_format_object_list_for_description'):
                                                try:
                                                    prominent_objects_detail = self.scene_describer._format_object_list_for_description(
                                                        detected_objects_from_landmarks_list[:min(1, len(detected_objects_from_landmarks_list))]
                                                    )
                                                except Exception as e:
                                                    print(f"Error formatting object list: {e}")

                                            scene_data_llm_no_yolo = {
                                                "original_description": scene_desc_no_yolo,
                                                "scene_type": best_scene_val_no_yolo,
                                                "scene_name": self.SCENE_TYPES.get(best_scene_val_no_yolo, {}).get("name", "Landmark")
                                                    if hasattr(self, 'SCENE_TYPES') else "Landmark",
                                                "detected_objects": detected_objects_from_landmarks_list,
                                                "object_list": "landmark",
                                                "confidence": scene_confidence_no_yolo,
                                                "lighting_info": lighting_info,
                                                "functional_zones": f_zones_no_yolo,
                                                "clip_analysis": landmark_results_no_yolo.get("clip_analysis_on_full_image", {}),
                                                "enable_landmark": True,
                                                "image_width": w_img_no_yolo,
                                                "image_height": h_img_no_yolo,
                                                "prominent_objects_detail": prominent_objects_detail
                                            }
                                            enhanced_desc_no_yolo = self.llm_enhancer.enhance_description(scene_data_llm_no_yolo)
                                        except Exception as e:
                                            print(f"Error enhancing description with LLM: {e}")
                                            import traceback
                                            traceback.print_exc()

                                    # 計算可能的活動,優先使用地標特定活動
                                    possible_activities = ["Sightseeing"]

                                    # 檢查是否有主要地標活動從 CLIP 分析結果中獲取
                                    primary_landmark_activities = landmark_results_no_yolo.get("primary_landmark_activities", [])

                                    if primary_landmark_activities:
                                        print(f"Using {len(primary_landmark_activities)} landmark-specific activities")
                                        possible_activities = primary_landmark_activities
                                    else:
                                        # 從檢測到的地標中提取特定活動
                                        landmark_specific_activities = []
                                        for lm_info_item in landmark_results_no_yolo.get("detected_landmarks", []):
                                            lm_id = lm_info_item.get("landmark_id")
                                            if lm_id and hasattr(self, 'LANDMARK_ACTIVITIES') and lm_id in self.LANDMARK_ACTIVITIES:
                                                landmark_specific_activities.extend(self.LANDMARK_ACTIVITIES[lm_id])

                                        if landmark_specific_activities:
                                            possible_activities = list(set(landmark_specific_activities))  # 去重
                                            print(f"Extracted {len(possible_activities)} activities from landmark data")
                                        else:
                                            # 回退到通用活動推斷
                                            if hasattr(self, 'descriptor') and hasattr(self.descriptor, '_infer_possible_activities'):
                                                try:
                                                    possible_activities = self.descriptor._infer_possible_activities(
                                                        best_scene_val_no_yolo,
                                                        detected_objects_from_landmarks_list,
                                                        enable_landmark=True,
                                                        scene_scores={best_scene_val_no_yolo: scene_confidence_no_yolo}
                                                    )
                                                except Exception as e:
                                                    print(f"Error inferring possible activities: {e}")

                                    # 準備最終結果
                                    return {
                                        "scene_type": best_scene_val_no_yolo,
                                        "scene_name": self.SCENE_TYPES.get(best_scene_val_no_yolo, {}).get("name", "Landmark")
                                            if hasattr(self, 'SCENE_TYPES') else "Landmark",
                                        "confidence": round(float(scene_confidence_no_yolo), 4),
                                        "description": scene_desc_no_yolo,
                                        "enhanced_description": enhanced_desc_no_yolo,
                                        "objects_present": detected_objects_from_landmarks_list,
                                        "object_count": len(detected_objects_from_landmarks_list),
                                        "regions": region_analysis_for_lm_desc,
                                        "possible_activities": possible_activities,
                                        "functional_zones": f_zones_no_yolo,
                                        "detected_landmarks": [lm for lm in detected_objects_from_landmarks_list if lm.get("is_landmark", False)],
                                        "primary_landmark": primary_landmark_no_yolo,
                                        "lighting_conditions": lighting_info or {"time_of_day": "unknown", "confidence": 0.0}
                                    }
                    except Exception as e:
                        print(f"Error in landmark-only detection path (analyze method): {e}")
                        import traceback
                        traceback.print_exc()

            # 如果地標檢測失敗或未嘗試,使用 CLIP 進行一般場景分析
            if not landmark_detection_result and self.use_clip and original_image_pil:
                try:
                    clip_analysis_val_no_yolo = None
                    if hasattr(self, 'clip_analyzer') and hasattr(self.clip_analyzer, 'analyze_image'):
                        try:
                            clip_analysis_val_no_yolo = self.clip_analyzer.analyze_image(
                                original_image_pil,
                                enable_landmark=current_run_enable_landmark
                            )
                        except Exception as e:
                            print(f"Error in CLIP analysis: {e}")

                    scene_type_llm_no_yolo = "llm_inferred_no_yolo"
                    confidence_llm_no_yolo = 0.0

                    if clip_analysis_val_no_yolo and isinstance(clip_analysis_val_no_yolo, dict):
                        top_scene = clip_analysis_val_no_yolo.get("top_scene")
                        if top_scene and isinstance(top_scene, tuple) and len(top_scene) >= 2:
                            confidence_llm_no_yolo = top_scene[1]
                            if isinstance(top_scene[0], str):
                                scene_type_llm_no_yolo = top_scene[0]

                    desc_llm_no_yolo = "Primary object detection did not yield results. This description is based on overall image context."

                    w_llm_no_yolo, h_llm_no_yolo = image_dims_val if image_dims_val else (1, 1)

                    enhanced_desc_llm_no_yolo = desc_llm_no_yolo
                    if self.use_llm and hasattr(self, 'llm_enhancer'):
                        try:
                            # 確保數據正確格式化
                            clip_analysis_safe = {}
                            if isinstance(clip_analysis_val_no_yolo, dict):
                                clip_analysis_safe = clip_analysis_val_no_yolo

                            scene_data_llm_no_yolo_enhance = {
                                "original_description": desc_llm_no_yolo,
                                "scene_type": scene_type_llm_no_yolo,
                                "scene_name": "Contextually Inferred (No Detections)",
                                "detected_objects": [],
                                "object_list": "general ambiance",
                                "confidence": confidence_llm_no_yolo,
                                "lighting_info": lighting_info or {"time_of_day": "unknown", "confidence": 0.0},
                                "clip_analysis": clip_analysis_safe,
                                "enable_landmark": current_run_enable_landmark,
                                "image_width": w_llm_no_yolo,
                                "image_height": h_llm_no_yolo,
                                "prominent_objects_detail": "the overall visual context"
                            }

                            if hasattr(self.llm_enhancer, 'enhance_description'):
                                try:
                                    enhanced_desc_llm_no_yolo = self.llm_enhancer.enhance_description(scene_data_llm_no_yolo_enhance)
                                except Exception as e:
                                    print(f"Error in enhance_description: {e}")

                            if (not enhanced_desc_llm_no_yolo or len(enhanced_desc_llm_no_yolo.strip()) < 20) and hasattr(self.llm_enhancer, 'handle_no_detection'):
                                try:
                                    enhanced_desc_llm_no_yolo = self.llm_enhancer.handle_no_detection(clip_analysis_safe)
                                except Exception as e:
                                    print(f"Error in handle_no_detection: {e}")
                        except Exception as e:
                            print(f"Error preparing data for LLM enhancement: {e}")
                            import traceback
                            traceback.print_exc()

                    # 安全類型轉換
                    try:
                        confidence_float = float(confidence_llm_no_yolo)
                    except (ValueError, TypeError):
                        confidence_float = 0.0

                    # 確保增強描述不為空
                    if not enhanced_desc_llm_no_yolo or not isinstance(enhanced_desc_llm_no_yolo, str):
                        enhanced_desc_llm_no_yolo = desc_llm_no_yolo

                    # 返回結果
                    return {
                        "scene_type": scene_type_llm_no_yolo,
                        "confidence": round(confidence_float, 4),
                        "description": desc_llm_no_yolo,
                        "enhanced_description": enhanced_desc_llm_no_yolo,
                        "objects_present": [],
                        "object_count": 0,
                        "regions": {},
                        "possible_activities": [],
                        "safety_concerns": [],
                        "lighting_conditions": lighting_info or {"time_of_day": "unknown", "confidence": 0.0}
                    }
                except Exception as e:
                    print(f"Error in CLIP no-detection fallback (analyze method): {e}")
                    import traceback
                    traceback.print_exc()

            # Check if Places365 provides useful scene information even without YOLO detections
            fallback_scene_type = "unknown"
            fallback_confidence = 0.0
            fallback_description = "No objects were detected in the image, and contextual analysis could not be performed or failed."

            if places365_info and places365_info.get('confidence', 0) > 0.3:
                fallback_scene_type = places365_info.get('mapped_scene_type', 'unknown')
                fallback_confidence = places365_info.get('confidence', 0.0)
                fallback_description = f"Scene appears to be {places365_info.get('scene_label', 'an unidentified location')} based on overall visual context."

            return {
                "scene_type": fallback_scene_type,
                "confidence": fallback_confidence,
                "description": fallback_description,
                "enhanced_description": "The image analysis system could not detect any recognizable objects or landmarks in this image.",
                "objects_present": [],
                "object_count": 0,
                "regions": {},
                "possible_activities": [],
                "safety_concerns": [],
                "lighting_conditions": lighting_info or {"time_of_day": "unknown", "confidence": 0.0}
            }

            if self.use_llm and self.use_clip and original_image_pil:
                try:
                    clip_analysis_val_no_yolo = self.clip_analyzer.analyze_image(original_image_pil, enable_landmark=current_run_enable_landmark)
                    scene_type_llm_no_yolo = "llm_inferred_no_yolo"
                    confidence_llm_no_yolo = clip_analysis_val_no_yolo.get("top_scene", ("unknown", 0.0))[1] if isinstance(clip_analysis_val_no_yolo, dict) else 0.0
                    desc_llm_no_yolo = "Primary object detection did not yield results. This description is based on overall image context."

                    w_llm_no_yolo, h_llm_no_yolo = image_dims_val if image_dims_val else (1,1)
                    scene_data_llm_no_yolo_enhance = {
                        "original_description": desc_llm_no_yolo, "scene_type": scene_type_llm_no_yolo,
                        "scene_name": "Contextually Inferred (No Detections)", "detected_objects": [], "object_list": "general ambiance",
                        "confidence": confidence_llm_no_yolo, "lighting_info": lighting_info, "clip_analysis": clip_analysis_val_no_yolo,
                        "enable_landmark": current_run_enable_landmark, "image_width": w_llm_no_yolo, "image_height": h_llm_no_yolo,
                        "prominent_objects_detail": "the overall visual context"
                    }
                    enhanced_desc_llm_no_yolo = self.llm_enhancer.enhance_description(scene_data_llm_no_yolo_enhance) if hasattr(self, 'llm_enhancer') else desc_llm_no_yolo
                    if hasattr(self, 'llm_enhancer') and hasattr(self.llm_enhancer, 'handle_no_detection') and (not enhanced_desc_llm_no_yolo or len(enhanced_desc_llm_no_yolo.strip()) < 20):
                        enhanced_desc_llm_no_yolo = self.llm_enhancer.handle_no_detection(clip_analysis_val_no_yolo)

                    return {
                        "scene_type": scene_type_llm_no_yolo, "confidence": round(float(confidence_llm_no_yolo),4),
                        "description": desc_llm_no_yolo, "enhanced_description": enhanced_desc_llm_no_yolo,
                        "objects_present": [], "object_count": 0, "regions": {}, "possible_activities": [],
                        "safety_concerns": [], "lighting_conditions": lighting_info or {"time_of_day": "unknown", "confidence": 0.0}
                    }
                except Exception as e:
                    print(f"Error in LLM/CLIP no-detection fallback (analyze method): {e}")

            return {
                "scene_type": "unknown", "confidence": 0.0,
                "description": "No objects were detected in the image, and contextual analysis could not be performed or failed.",
                "objects_present": [], "object_count": 0, "regions": {}, "possible_activities": [],
                "safety_concerns": [], "lighting_conditions": lighting_info or {"time_of_day": "unknown", "confidence": 0.0}
            }

        # Main processing flow if YOLO detections are present
        if self.class_names is None and hasattr(detection_result, 'names'):
            self.class_names = detection_result.names
            if hasattr(self.spatial_analyzer, 'class_names'):
                self.spatial_analyzer.class_names = self.class_names

        detected_objects_main = self.spatial_analyzer._extract_detected_objects(
            detection_result,
            confidence_threshold=class_confidence_threshold
        )

        if not detected_objects_main:
            return {
                "scene_type": "unknown", "confidence": 0.0,
                "description": "No objects detected with sufficient confidence by the primary vision system.",
                "objects_present": [], "object_count": 0, "regions": {}, "possible_activities": [],
                "safety_concerns": [], "lighting_conditions": lighting_info or {"time_of_day": "unknown", "confidence": 0.0}
            }

        # Spatial analysis done once on YOLO objects
        region_analysis_val = self.spatial_analyzer._analyze_regions(detected_objects_main)

        final_functional_zones = {}
        final_activities = []
        final_landmark_info = {}

        tentative_best_scene = "unknown"
        tentative_scene_confidence = 0.0

        # Landmark Processing and Integration
        landmark_objects_identified_clip = []
        landmark_specific_activities = [] # NEW
        if self.use_clip and current_run_enable_landmark and hasattr(self, 'process_unknown_objects') and hasattr(self, 'landmark_classifier'):

            detected_objects_main_after_lm, landmark_objects_identified_clip = self.process_unknown_objects(
                detection_result,
                detected_objects_main
            )
            detected_objects_main = detected_objects_main_after_lm # Update main list

            if landmark_objects_identified_clip:
                primary_landmark_clip = max(landmark_objects_identified_clip, key=lambda x: x.get("confidence", 0.0), default=None)
                if primary_landmark_clip and primary_landmark_clip.get("confidence", 0.0) > 0.35:
                    lm_type_raw = "architectural" # Default
                    if hasattr(self.landmark_classifier, '_determine_landmark_type') and primary_landmark_clip.get("landmark_id"):
                        lm_type_raw = self.landmark_classifier._determine_landmark_type(primary_landmark_clip.get("landmark_id"))
                    else:
                         lm_type_raw = primary_landmark_clip.get("landmark_type", "architectural")


                    if lm_type_raw == "natural": tentative_best_scene = "natural_landmark"
                    elif lm_type_raw == "monument": tentative_best_scene = "historical_monument"
                    else: tentative_best_scene = "tourist_landmark"
                    tentative_scene_confidence = primary_landmark_clip.get("confidence", 0.0)

                final_landmark_info = {
                    "detected_landmarks": landmark_objects_identified_clip,
                    "primary_landmark": primary_landmark_clip,
                    "detailed_landmarks": landmark_objects_identified_clip
                }

                # 專門儲存地標特定活動的列表
                landmark_specific_activities = []

                # 優先收集來自識別地標的特定活動
                for lm_obj in landmark_objects_identified_clip:
                    lm_id = lm_obj.get("landmark_id")
                    if lm_id and lm_id in self.LANDMARK_ACTIVITIES:
                        landmark_specific_activities.extend(self.LANDMARK_ACTIVITIES[lm_id])

                # 將特定地標活動加入最終活動列表
                if landmark_specific_activities:
                    final_activities.extend(landmark_specific_activities)
                    print(f"Added {len(landmark_specific_activities)} landmark-specific activities for {', '.join([lm.get('landmark_name', 'unknown') for lm in landmark_objects_identified_clip if lm.get('is_landmark', False)])}")

                if hasattr(self.spatial_analyzer, '_identify_landmark_zones'):
                    final_functional_zones.update(self.spatial_analyzer._identify_landmark_zones(landmark_objects_identified_clip))

        if not current_run_enable_landmark:
            detected_objects_main = [obj for obj in detected_objects_main if not obj.get("is_landmark", False)]
            final_landmark_info = {}

        # --- Compute YOLO-based scene scores ---
        # MODIFIED: Pass region_analysis_val as spatial_analysis_results
        yolo_scene_scores_val = self._compute_scene_scores(detected_objects_main,
                                                         spatial_analysis_results=region_analysis_val)

        # --- CLIP Analysis for general scene scores ---
        clip_scene_scores_val = {}
        clip_analysis_results = None # To store the full dict from clip_analyzer
        if self.use_clip and original_image_pil is not None:
            try:
                clip_analysis_results = self.clip_analyzer.analyze_image(
                    original_image_pil,
                    enable_landmark=current_run_enable_landmark,
                    exclude_categories=["landmark", "tourist", "monument", "tower", "attraction", "scenic", "historical", "famous"] if not current_run_enable_landmark else None
                )
                if isinstance(clip_analysis_results, dict): # Ensure it's a dict before get
                    clip_scene_scores_val = clip_analysis_results.get("scene_scores", {})
                    # Filter again if landmarks are disabled
                    if not current_run_enable_landmark:
                        clip_scene_scores_val = {k: v for k, v in clip_scene_scores_val.items() if not any(kw in k.lower() for kw in ["landmark", "monument", "tourist"])}
                        if "cultural_analysis" in clip_analysis_results: del clip_analysis_results["cultural_analysis"]
                        if "top_scene" in clip_analysis_results and any(term in clip_analysis_results.get("top_scene",["unknown",0.0])[0].lower() for term in ["landmark", "monument", "tourist"]):
                            non_lm_cs = sorted([item for item in clip_scene_scores_val.items() if item[1] > 0], key=lambda x:x[1], reverse=True)
                            clip_analysis_results["top_scene"] = non_lm_cs[0] if non_lm_cs else ("unknown", 0.0)

                    # (Keep your asian_commercial_street special handling here if needed)
                    if not lighting_info and "lighting_condition" in clip_analysis_results: # If main lighting_info is still None
                        lt, lc = clip_analysis_results.get("lighting_condition", ("unknown", 0.0))
                        lighting_info = {"time_of_day": lt, "confidence": lc, "source": "CLIP_fallback"}
            except Exception as e:
                print(f"Error in main CLIP analysis for YOLO path (analyze method): {e}")

        # Calculate stats for _fuse_scene_scores (based on non-landmark YOLO objects)
        yolo_only_objects_for_fuse_stats = [obj for obj in detected_objects_main if not obj.get("is_landmark")]
        num_yolo_detections_for_fuse = len(yolo_only_objects_for_fuse_stats)
        avg_yolo_confidence_for_fuse = sum(obj.get('confidence', 0.0) for obj in yolo_only_objects_for_fuse_stats) / num_yolo_detections_for_fuse if num_yolo_detections_for_fuse > 0 else 0.0

        print(f"DEBUG: About to call _fuse_scene_scores with lighting_info: {lighting_info}")
        print(f"DEBUG: Places365_info being passed to fuse: {places365_info}")

        scene_scores_fused = self._fuse_scene_scores(
            yolo_scene_scores_val, clip_scene_scores_val,
            num_yolo_detections=num_yolo_detections_for_fuse,
            avg_yolo_confidence=avg_yolo_confidence_for_fuse,
            lighting_info=lighting_info,
            places365_info=places365_info
        )

        # Respect tentative scene from strong landmark detection during fusion adjustment
        if tentative_best_scene != "unknown" and "landmark" in tentative_best_scene.lower() and tentative_scene_confidence > 0.5:
             scene_scores_fused[tentative_best_scene] = max(scene_scores_fused.get(tentative_best_scene, 0.0), tentative_scene_confidence * 0.95)

        # Final determination of scene type
        final_best_scene, final_scene_confidence = self._determine_scene_type(scene_scores_fused)

        if not current_run_enable_landmark and final_best_scene in ["tourist_landmark", "natural_landmark", "historical_monument"]:
            if hasattr(self, '_get_alternative_scene_type'):
                alt_scene_type = self._get_alternative_scene_type(final_best_scene, detected_objects_main, scene_scores_fused)
                final_best_scene = alt_scene_type
                final_scene_confidence = scene_scores_fused.get(alt_scene_type, 0.6)
            else:
                final_best_scene = "generic_street_view"; final_scene_confidence = min(final_scene_confidence, 0.65)

        # Generate final descriptive content (Activities, Safety, Zones)
        # 如果有特定地標活動,限制通用活動的數量
        generic_activities = []
        if hasattr(self.descriptor, '_infer_possible_activities'):
            generic_activities = self.descriptor._infer_possible_activities(
                final_best_scene, detected_objects_main,
                enable_landmark=current_run_enable_landmark, scene_scores=scene_scores_fused
            )

        # 優先處理策略:使用特定地標活動,不足時才從通用活動補充
        if landmark_specific_activities:
            # 如果有特定活動,優先保留,去除與特定活動重複的通用活動
            unique_generic_activities = [act for act in generic_activities if act not in landmark_specific_activities]

            # 如果特定活動少於3個,從通用活動中補充
            if len(landmark_specific_activities) < 3:
                # 補充通用活動但總數不超過7個
                supplement_count = min(3 - len(landmark_specific_activities), len(unique_generic_activities))
                if supplement_count > 0:
                    final_activities.extend(unique_generic_activities[:supplement_count])
        else:
            # 若無特定活動,則使用所有通用活動
            final_activities.extend(generic_activities)

        # 去重並排序,但確保特定地標活動保持在前面
        final_activities_set = set(final_activities)
        final_activities = []

        # 先加入特定地標活動(按原順序)
        for activity in landmark_specific_activities:
            if activity in final_activities_set:
                final_activities.append(activity)
                final_activities_set.remove(activity)

        # 再加入通用活動(按字母排序)
        final_activities.extend(sorted(list(final_activities_set)))

        final_safety_concerns = self.descriptor._identify_safety_concerns(detected_objects_main, final_best_scene) if hasattr(self.descriptor, '_identify_safety_concerns') else []

        if hasattr(self.spatial_analyzer, '_identify_functional_zones'): # Update functional_zones
            general_zones = self.spatial_analyzer._identify_functional_zones(detected_objects_main, final_best_scene)
            for gz_key, gz_val in general_zones.items():
                if gz_key not in final_functional_zones: final_functional_zones[gz_key] = gz_val

        # Filter again if landmarks disabled for this run
        if not current_run_enable_landmark:
            final_functional_zones = {k: v for k, v in final_functional_zones.items() if not any(kw in k.lower() for kw in ["landmark", "monument", "viewing", "tourist"])}
            current_activities_temp = [act for act in final_activities if not any(kw in act.lower() for kw in ["sightsee", "photograph", "tour", "histor", "landmark", "monument", "cultur"])]
            final_activities = current_activities_temp
            if not final_activities and hasattr(self.descriptor, '_infer_possible_activities'):
                 final_activities = self.descriptor._infer_possible_activities("generic_street_view", detected_objects_main, enable_landmark=False)

        # 創建淨化的光線資訊,避免不合理的時間描述
        lighting_info_clean = None
        if lighting_info:
            lighting_info_clean = {
                "is_indoor": lighting_info.get("is_indoor"),
                "confidence": lighting_info.get("confidence", 0.0),
                "time_of_day": lighting_info.get("time_of_day", "unknown")  # 加入這行
            }
            # 如果 Places365 提供高信心度判斷,就用它的結果
            if places365_info and places365_info.get('confidence', 0) >= 0.8:
                lighting_info_clean["is_indoor"] = places365_info.get('is_indoor')
                lighting_info_clean["confidence"] = places365_info.get('confidence')

        base_scene_description = self.generate_scene_description(
            scene_type=final_best_scene,
            detected_objects=detected_objects_main,
            confidence=final_scene_confidence,
            lighting_info=lighting_info_clean,
            functional_zones=final_functional_zones,
            enable_landmark=current_run_enable_landmark,
            scene_scores=scene_scores_fused,
            spatial_analysis=region_analysis_val,
            image_dimensions=image_dims_val
        )

        if not current_run_enable_landmark and hasattr(self, '_remove_landmark_references'):
            base_scene_description = self._remove_landmark_references(base_scene_description)

        # --- LLM Enhancement ---
        enhanced_final_description = base_scene_description
        llm_verification_output = None
        if self.use_llm and hasattr(self, 'llm_enhancer'):
            try:
                obj_list_for_llm = ", ".join(sorted(list(set(
                    obj["class_name"] for obj in detected_objects_main
                    if obj.get("confidence", 0) > 0.4 and not obj.get("is_landmark")
                ))))
                if not obj_list_for_llm and current_run_enable_landmark and final_landmark_info.get("primary_landmark"):
                    obj_list_for_llm = final_landmark_info["primary_landmark"].get("class_name", "a prominent feature")
                elif not obj_list_for_llm: obj_list_for_llm = "various visual elements"

                # 生成物體統計信息
                object_statistics = {}
                for obj in detected_objects_main:
                    class_name = obj.get("class_name", "unknown")
                    if class_name not in object_statistics:
                        object_statistics[class_name] = {
                            "count": 0,
                            "avg_confidence": 0.0,
                            "max_confidence": 0.0,
                            "instances": []
                        }

                    stats = object_statistics[class_name]
                    stats["count"] += 1
                    stats["instances"].append(obj)
                    stats["max_confidence"] = max(stats["max_confidence"], obj.get("confidence", 0.0))

                # 計算平均信心度
                for class_name, stats in object_statistics.items():
                    if stats["count"] > 0:
                        total_conf = sum(inst.get("confidence", 0.0) for inst in stats["instances"])
                        stats["avg_confidence"] = total_conf / stats["count"]

                llm_scene_data = {
                    "original_description": base_scene_description, "scene_type": final_best_scene,
                    "scene_name": self.SCENE_TYPES.get(final_best_scene, {}).get("name", "Unknown Scene"),
                    "detected_objects": detected_objects_main, "object_list": obj_list_for_llm,
                    "object_statistics": object_statistics,  # 新增統計信息
                    "confidence": final_scene_confidence, "lighting_info": lighting_info,
                    "functional_zones": final_functional_zones, "activities": final_activities,
                    "safety_concerns": final_safety_concerns,
                    "clip_analysis": clip_analysis_results if isinstance(clip_analysis_results, dict) else None,
                    "enable_landmark": current_run_enable_landmark,
                    "image_width": image_dims_val[0] if image_dims_val else None,
                    "image_height": image_dims_val[1] if image_dims_val else None,
                    "prominent_objects_detail": self.scene_describer._format_object_list_for_description(
                        self.scene_describer._get_prominent_objects(detected_objects_main, min_prominence_score=0.1, max_categories_to_return=3, max_total_objects=7)
                    ) if hasattr(self.scene_describer, '_get_prominent_objects') and hasattr(self.scene_describer, '_format_object_list_for_description') else ""
                }
                if current_run_enable_landmark and final_landmark_info.get("primary_landmark"):
                    llm_scene_data["primary_landmark_info"] = final_landmark_info["primary_landmark"]

                if self.use_clip and clip_analysis_results and isinstance(clip_analysis_results, dict) and "top_scene" in clip_analysis_results:
                    clip_top_name = clip_analysis_results.get("top_scene",["unknown",0.0])[0]
                    clip_top_conf = clip_analysis_results.get("top_scene",["unknown",0.0])[1]
                    if clip_top_name != final_best_scene and clip_top_conf > 0.4 and final_scene_confidence > 0.4 and hasattr(self.llm_enhancer, 'verify_detection'):
                        llm_verification_output = self.llm_enhancer.verify_detection(
                            detected_objects_main, clip_analysis_results, final_best_scene,
                            self.SCENE_TYPES.get(final_best_scene, {}).get("name", "Unknown"), final_scene_confidence
                        )
                        if llm_verification_output : llm_scene_data["verification_result"] = llm_verification_output.get("verification_text", "")

                enhanced_final_description = self.llm_enhancer.enhance_description(llm_scene_data)
                if not current_run_enable_landmark and hasattr(self, '_remove_landmark_references'):
                     enhanced_final_description = self._remove_landmark_references(enhanced_final_description)
            except Exception as e:
                print(f"Error in LLM Enhancement in main flow (analyze method): {e}")

        # Construct final output dictionary
        output_result = {
            "scene_type": final_best_scene if final_scene_confidence >= scene_confidence_threshold else "unknown",
            "scene_name": self.SCENE_TYPES.get(final_best_scene, {}).get("name", "Unknown Scene") if final_scene_confidence >= scene_confidence_threshold else "Unknown Scene",
            "confidence": round(float(final_scene_confidence), 4),
            "description": base_scene_description,
            "enhanced_description": enhanced_final_description,
            "objects_present": [{"class_id": obj.get("class_id", -1), "class_name": obj.get("class_name", "unknown"), "confidence": round(float(obj.get("confidence",0.0)), 4)} for obj in detected_objects_main],
            "object_count": len(detected_objects_main),
            "regions": region_analysis_val,
            "possible_activities": final_activities,
            "safety_concerns": final_safety_concerns,
            "functional_zones": final_functional_zones,
            "alternative_scenes": self.descriptor._get_alternative_scenes(scene_scores_fused, scene_confidence_threshold, top_k=2) if hasattr(self.descriptor, '_get_alternative_scenes') else [],
            "lighting_conditions": lighting_info if lighting_info else {"time_of_day": "unknown", "confidence": 0.0, "source": "default"}
        }

        if current_run_enable_landmark and final_landmark_info and final_landmark_info.get("detected_landmarks"):
            output_result.update(final_landmark_info)
            if final_best_scene in ["tourist_landmark", "natural_landmark", "historical_monument"]:
                output_result["scene_source"] = "landmark_detection"
        elif not current_run_enable_landmark:
             for key_rm in ["detected_landmarks", "primary_landmark", "detailed_landmarks", "scene_source"]:
                if key_rm in output_result: del output_result[key_rm]

        if llm_verification_output:
            output_result["llm_verification"] = llm_verification_output.get("verification_text")
            if llm_verification_output.get("has_errors", False):
                output_result["detection_warnings"] = "LLM detected potential issues with object recognition."

        if clip_analysis_results and isinstance(clip_analysis_results, dict) and "error" not in clip_analysis_results:
            top_scene_clip = clip_analysis_results.get("top_scene", ("unknown", 0.0))
            output_result["clip_analysis"] = {
                "top_scene": (top_scene_clip[0], round(float(top_scene_clip[1]), 4)),
                "cultural_analysis": clip_analysis_results.get("cultural_analysis", {}) if current_run_enable_landmark else {}
            }

        return output_result


    def _get_object_spatial_cohesion_score(self, objects_for_scene: List[Dict], spatial_analysis_results: Optional[Dict]) -> float:
        """
        (This is a NEW helper function)
        Calculates a score based on how spatially cohesive the key objects for a scene are.
        A higher score means objects are more clustered in fewer regions.
        This is a heuristic and can be refined.

        Args:
            objects_for_scene: List of detected objects (dictionaries with at least 'class_id')
                               relevant to the current scene type being evaluated.
            spatial_analysis_results: Output from SpatialAnalyzer._analyze_regions.
                                      Expected format: {'objects_by_region': {'region_name': [{'class_id': id, ...}, ...]}}

        Returns:
            float: A cohesion score, typically a small bonus (e.g., 0.0 to 0.1).
        """
        if not objects_for_scene or not spatial_analysis_results or \
           "objects_by_region" not in spatial_analysis_results or \
           not spatial_analysis_results["objects_by_region"]:
            return 0.0

        # Get the set of class_ids for the key objects defining the current scene type
        key_object_class_ids = {obj.get('class_id') for obj in objects_for_scene if obj.get('class_id') is not None}
        if not key_object_class_ids:
            return 0.0

        # Find in which regions these key objects appear
        regions_containing_key_objects = set()
        # Count how many of the *instances* of key objects are found
        # This helps differentiate a scene with 1 chair in 1 region vs 5 chairs spread over 5 regions
        total_key_object_instances_found = 0

        for region_name, objects_in_region_list in spatial_analysis_results["objects_by_region"].items():
            region_has_key_object = False
            for obj_in_region in objects_in_region_list:
                if obj_in_region.get('class_id') in key_object_class_ids:
                    region_has_key_object = True
                    total_key_object_instances_found += 1 # Count each instance
            if region_has_key_object:
                regions_containing_key_objects.add(region_name)

        num_distinct_key_objects_in_scene = len(key_object_class_ids) # Number of *types* of key objects
        num_instances_of_key_objects_passed = len(objects_for_scene) # Number of *instances* passed for this scene

        if not regions_containing_key_objects or num_instances_of_key_objects_passed == 0:
            return 0.0

        # A simple heuristic:
        if len(regions_containing_key_objects) == 1 and total_key_object_instances_found >= num_instances_of_key_objects_passed * 0.75:
            return 0.10  # Strongest cohesion: most/all key object instances in a single region
        elif len(regions_containing_key_objects) <= 2 and total_key_object_instances_found >= num_instances_of_key_objects_passed * 0.60:
            return 0.05  # Moderate cohesion: most/all key object instances in up to two regions
        elif len(regions_containing_key_objects) <= 3 and total_key_object_instances_found >= num_instances_of_key_objects_passed * 0.50:
            return 0.02  # Weaker cohesion

        return 0.0


    def _compute_scene_scores(self, detected_objects: List[Dict], spatial_analysis_results: Optional[Dict] = None) -> Dict[str, float]:
        """
        Compute confidence scores for each scene type based on detected objects.
        Enhanced to better score everyday scenes and consider object richness and spatial cohesion.

        Args:
            detected_objects: List of detected objects with their details (class_id, confidence, region, etc.).
            spatial_analysis_results: Optional output from SpatialAnalyzer, specifically 'objects_by_region',
                                      which is used by _get_object_spatial_cohesion_score.

        Returns:
            Dictionary mapping scene types to confidence scores.
        """
        scene_scores = {}
        if not detected_objects:
            for scene_type_key in self.SCENE_TYPES:
                scene_scores[scene_type_key] = 0.0
            return scene_scores

        # Prepare data from detected_objects
        detected_class_ids_all = [obj["class_id"] for obj in detected_objects]
        detected_classes_set_all = set(detected_class_ids_all)
        class_counts_all = {}
        for obj in detected_objects:
            class_id = obj["class_id"]
            class_counts_all[class_id] = class_counts_all.get(class_id, 0) + 1

        # Evaluate each scene type defined in self.SCENE_TYPES
        for scene_type, scene_def in self.SCENE_TYPES.items():
            required_obj_ids_defined = set(scene_def.get("required_objects", []))
            optional_obj_ids_defined = set(scene_def.get("optional_objects", []))
            min_required_matches_needed = scene_def.get("minimum_required", 0)

            # Determine which actual detected objects are relevant for this scene_type
            # These lists will store the actual detected object dicts, not just class_ids
            actual_required_objects_found_list = []
            for req_id in required_obj_ids_defined:
                if req_id in detected_classes_set_all:
                    # Find first instance of this required object to add to list (for cohesion check later)
                    for dobj in detected_objects:
                        if dobj['class_id'] == req_id:
                            actual_required_objects_found_list.append(dobj)
                            break

            num_required_matches_found = len(actual_required_objects_found_list)

            actual_optional_objects_found_list = []
            for opt_id in optional_obj_ids_defined:
                if opt_id in detected_classes_set_all:
                    for dobj in detected_objects:
                        if dobj['class_id'] == opt_id:
                            actual_optional_objects_found_list.append(dobj)
                            break

            num_optional_matches_found = len(actual_optional_objects_found_list)

            # --- Initial Score Calculation Weights ---
            # Base score: 55% from required, 25% from optional, 10% richness, 10% cohesion (max)
            required_weight = 0.55
            optional_weight = 0.25
            richness_bonus_max = 0.10
            cohesion_bonus_max = 0.10 # Max bonus from _get_object_spatial_cohesion_score is 0.1

            current_scene_score = 0.0
            objects_to_check_for_cohesion = [] # For spatial cohesion scoring

            # --- Check minimum_required condition & Calculate base score ---
            if num_required_matches_found >= min_required_matches_needed:
                if len(required_obj_ids_defined) > 0:
                    required_ratio = num_required_matches_found / len(required_obj_ids_defined)
                else: # No required objects defined, but min_required_matches_needed could be 0
                    required_ratio = 1.0 if min_required_matches_needed == 0 else 0.0

                current_scene_score = required_ratio * required_weight
                objects_to_check_for_cohesion.extend(actual_required_objects_found_list)

                # Add score from optional objects
                if len(optional_obj_ids_defined) > 0:
                    optional_ratio = num_optional_matches_found / len(optional_obj_ids_defined)
                    current_scene_score += optional_ratio * optional_weight
                objects_to_check_for_cohesion.extend(actual_optional_objects_found_list)

            # Flexible handling for "everyday scenes" if strict minimum_required (based on 'required_objects') isn't met
            elif scene_type in self.EVERYDAY_SCENE_TYPE_KEYS:
                # If an everyday scene has many optional items, it might still be a weak candidate
                # Check if a decent proportion of its 'optional_objects' are present
                if len(optional_obj_ids_defined) > 0 and \
                   (num_optional_matches_found / len(optional_obj_ids_defined)) >= 0.25: # e.g., at least 25% of typical optional items
                    # Base score more on optional fulfillment for these types
                    current_scene_score = (num_optional_matches_found / len(optional_obj_ids_defined)) * (required_weight + optional_weight * 0.5) # Give some base
                    objects_to_check_for_cohesion.extend(actual_optional_objects_found_list)
                else:
                    scene_scores[scene_type] = 0.0
                    continue # Skip this scene type
            else: # For non-everyday scenes, if minimum_required is not met, score is 0
                scene_scores[scene_type] = 0.0
                continue

            # --- Bonus for object richness/variety ---
            # Considers unique object *classes* found that are relevant to the scene definition
            relevant_defined_class_ids = required_obj_ids_defined.union(optional_obj_ids_defined)
            unique_relevant_detected_classes = relevant_defined_class_ids.intersection(detected_classes_set_all)

            object_richness_score = 0.0
            if len(relevant_defined_class_ids) > 0:
                richness_ratio = len(unique_relevant_detected_classes) / len(relevant_defined_class_ids)
                object_richness_score = min(richness_bonus_max, richness_ratio * 0.15) # Max 10% bonus from richness
            current_scene_score += object_richness_score

            # --- Bonus for spatial cohesion (if spatial_analysis_results are provided) ---
            spatial_cohesion_bonus = 0.0
            if spatial_analysis_results and objects_to_check_for_cohesion:
                # Deduplicate objects_to_check_for_cohesion based on actual object instances (not just class_id)
                # This can be done by converting list of dicts to list of tuples of items for hashing
                # However, assuming _get_object_spatial_cohesion_score handles instances correctly.
                # If objects_to_check_for_cohesion might have duplicate dict references for the SAME object,
                # then a more robust deduplication on actual object references would be needed if not already handled.
                # For now, assume it's a list of unique object *instances* found relevant to the scene.
                spatial_cohesion_bonus = self._get_object_spatial_cohesion_score(
                    objects_to_check_for_cohesion, # Pass the list of actual detected object dicts
                    spatial_analysis_results
                )
            current_scene_score += spatial_cohesion_bonus # Max 0.1 from this bonus

            # --- Bonus for multiple instances of key objects (original logic refined) ---
            multiple_instance_bonus = 0.0
            # For multiple instance bonus, focus on objects central to the scene's definition
            key_objects_for_multi_instance_check = required_obj_ids_defined
            if scene_type in self.EVERYDAY_SCENE_TYPE_KEYS and len(optional_obj_ids_defined) > 0:
                # For everyday scenes, some optionals can also be key if they appear multiple times
                # e.g., multiple chairs in a "general_indoor_space"
                key_objects_for_multi_instance_check = key_objects_for_multi_instance_check.union(
                    set(list(optional_obj_ids_defined)[:max(1, len(optional_obj_ids_defined)//2)]) # consider first half of optionals
                )

            for class_id_check in key_objects_for_multi_instance_check:
                if class_id_check in detected_classes_set_all and class_counts_all.get(class_id_check, 0) > 1:
                    multiple_instance_bonus += 0.025 # Slightly smaller bonus per type
            current_scene_score += min(0.075, multiple_instance_bonus) # Max 7.5% bonus

            # Apply scene-specific priority defined in SCENE_TYPES
            if "priority" in scene_def:
                current_scene_score *= scene_def["priority"]

            scene_scores[scene_type] = min(1.0, max(0.0, current_scene_score))

        # If landmark detection is disabled via the instance attribute self.enable_landmark,
        # ensure scores for landmark-specific scene types are zeroed out.
        if hasattr(self, 'enable_landmark') and not self.enable_landmark:
            landmark_scene_types = ["tourist_landmark", "natural_landmark", "historical_monument"]
            for lm_scene_type in landmark_scene_types:
                if lm_scene_type in scene_scores:
                    scene_scores[lm_scene_type] = 0.0

        return scene_scores

    def _determine_scene_type(self, scene_scores: Dict[str, float]) -> Tuple[str, float]:
        """
        Determine the most likely scene type based on scores.
        Args:
            scene_scores: Dictionary mapping scene types to confidence scores
        Returns:
            Tuple of (best_scene_type, confidence)
        """
        if not scene_scores:
            return "unknown", 0.0

        best_scene = max(scene_scores, key=scene_scores.get)
        best_score = scene_scores[best_scene]
        return best_scene, float(best_score)


    def _fuse_scene_scores(self,
                       yolo_scene_scores: Dict[str, float],
                       clip_scene_scores: Dict[str, float],
                       num_yolo_detections: int = 0,
                       avg_yolo_confidence: float = 0.0,
                       lighting_info: Optional[Dict] = None,
                       places365_info: Optional[Dict] = None
                      ) -> Dict[str, float]:
        """
        Fuse scene scores from YOLO-based object detection, CLIP-based analysis, and Places365 scene classification.
        Adjusts weights based on scene type, richness of YOLO detections, lighting information, and Places365 confidence.

        Args:
            yolo_scene_scores: Scene scores based on YOLO object detection.
            clip_scene_scores: Scene scores based on CLIP analysis.
            num_yolo_detections: Total number of non-landmark objects detected by YOLO with sufficient confidence.
            avg_yolo_confidence: Average confidence of non-landmark objects detected by YOLO.
            lighting_info: Optional lighting condition analysis results,
                        expected to contain 'is_indoor' (bool) and 'confidence' (float).
            places365_info: Optional Places365 scene classification results,
                            expected to contain 'mapped_scene_type', 'confidence', and 'is_indoor'.

        Returns:
            Dict: Fused scene scores incorporating all three analysis sources.
        """
        # Handle cases where one of the score dictionaries might be empty or all scores are effectively zero
        # Extract and process Places365 scene scores
        places365_scene_scores_map = {} # 修改變數名稱以避免與傳入的字典衝突
        if places365_info and places365_info.get('confidence', 0) > 0.1:
            mapped_scene_type = places365_info.get('mapped_scene_type', 'unknown')
            places365_confidence = places365_info.get('confidence', 0.0)

            if mapped_scene_type in self.SCENE_TYPES.keys():
                places365_scene_scores_map[mapped_scene_type] = places365_confidence # 使用新的字典
                print(f"Places365 contributing: {mapped_scene_type} with confidence {places365_confidence:.3f}")

        yolo_has_meaningful_scores = bool(yolo_scene_scores and any(s > 1e-5 for s in yolo_scene_scores.values())) # 確保是布林值
        clip_has_meaningful_scores = bool(clip_scene_scores and any(s > 1e-5 for s in clip_scene_scores.values())) # 確保是布林值
        places365_has_meaningful_scores = bool(places365_scene_scores_map and any(s > 1e-5 for s in places365_scene_scores_map.values()))

        meaningful_sources_count = sum([
            yolo_has_meaningful_scores,
            clip_has_meaningful_scores,
            places365_has_meaningful_scores
        ])


        if meaningful_sources_count == 0:
            return {st: 0.0 for st in self.SCENE_TYPES.keys()}
        elif meaningful_sources_count == 1:
            if yolo_has_meaningful_scores:
                return {st: yolo_scene_scores.get(st, 0.0) for st in self.SCENE_TYPES.keys()}
            elif clip_has_meaningful_scores:
                return {st: clip_scene_scores.get(st, 0.0) for st in self.SCENE_TYPES.keys()}
            elif places365_has_meaningful_scores:
                return {st: places365_scene_scores_map.get(st, 0.0) for st in self.SCENE_TYPES.keys()}

        fused_scores = {}
        all_relevant_scene_types = set(self.SCENE_TYPES.keys())
        all_possible_scene_types = all_relevant_scene_types.union(
            set(yolo_scene_scores.keys()),
            set(clip_scene_scores.keys()),
            set(places365_scene_scores_map.keys())
        )

        # Base weights - adjusted to accommodate three sources
        default_yolo_weight = 0.5
        default_clip_weight = 0.3
        default_places365_weight = 0.2

        is_lighting_indoor = None
        lighting_analysis_confidence = 0.0
        if lighting_info and isinstance(lighting_info, dict):
            is_lighting_indoor = lighting_info.get("is_indoor")
            lighting_analysis_confidence = lighting_info.get("confidence", 0.0)

        for scene_type in all_possible_scene_types:
            yolo_score = yolo_scene_scores.get(scene_type, 0.0)
            clip_score = clip_scene_scores.get(scene_type, 0.0)
            places365_score = places365_scene_scores_map.get(scene_type, 0.0)

            current_yolo_weight = default_yolo_weight
            current_clip_weight = default_clip_weight
            current_places365_weight = default_places365_weight

            scene_definition = self.SCENE_TYPES.get(scene_type, {})

            # Weight adjustment based on scene_type nature and YOLO richness
            if scene_type in self.EVERYDAY_SCENE_TYPE_KEYS:
                # Places365 excels at everyday scene classification
                if num_yolo_detections >= 5 and avg_yolo_confidence >= 0.45: # Rich YOLO for everyday
                    current_yolo_weight = 0.60
                    current_clip_weight = 0.15
                    current_places365_weight = 0.25
                elif num_yolo_detections >= 3: # Moderate YOLO for everyday
                    current_yolo_weight = 0.50
                    current_clip_weight = 0.20
                    current_places365_weight = 0.30
                else: # Sparse YOLO for everyday, rely more on Places365
                    current_yolo_weight = 0.35
                    current_clip_weight = 0.25
                    current_places365_weight = 0.40

            # For scenes where CLIP's global understanding or specific training is often more valuable
            elif any(keyword in scene_type.lower() for keyword in ["asian", "cultural", "aerial", "landmark", "monument", "tourist", "natural_landmark", "historical_monument"]):
                current_yolo_weight = 0.25
                current_clip_weight = 0.65
                current_places365_weight = 0.10  # Lower weight for landmark scenes

            # For specific indoor common scenes (non-landmark), object detection is key but Places365 provides strong scene context
            elif any(keyword in scene_type.lower() for keyword in
                    ["room", "kitchen", "office", "bedroom", "desk_area", "indoor_space",
                    "professional_kitchen", "cafe", "library", "gym", "retail_store",
                    "supermarket", "classroom", "conference_room", "medical_facility",
                    "educational_setting", "dining_area"]):
                current_yolo_weight = 0.55
                current_clip_weight = 0.20
                current_places365_weight = 0.25

            # For specific outdoor common scenes (non-landmark) where objects are still important
            elif any(keyword in scene_type.lower() for keyword in
                    ["parking_lot", "park_area", "beach", "harbor", "playground", "sports_field", "bus_stop", "train_station", "airport"]):
                current_yolo_weight = 0.50
                current_clip_weight = 0.25
                current_places365_weight = 0.25

            # If landmark detection is globally disabled for this run
            if hasattr(self, 'enable_landmark') and not self.enable_landmark:
                if any(keyword in scene_type.lower() for keyword in ["landmark", "monument", "tourist"]):
                    yolo_score = 0.0 # Should already be 0 from _compute_scene_scores
                    clip_score *= 0.05 # Heavily penalize
                    places365_score *= 0.8 if scene_type not in self.EVERYDAY_SCENE_TYPE_KEYS else 1.0 # Slight penalty for landmark scenes
                elif scene_type not in self.EVERYDAY_SCENE_TYPE_KEYS and \
                    not any(keyword in scene_type.lower() for keyword in ["asian", "cultural", "aerial"]):
                    # Redistribute weights away from CLIP towards YOLO and Places365
                    weight_boost = 0.05
                    current_yolo_weight = min(0.9, current_yolo_weight + weight_boost)
                    current_places365_weight = min(0.9, current_places365_weight + weight_boost)
                    current_clip_weight = max(0.1, current_clip_weight - weight_boost * 2)

            # Boost Places365 weight if it has high confidence for this specific scene type
            if places365_score > 0.0 and places365_info: # 這裡的 places365_score 已經是從 map 中獲取
                places365_original_confidence = places365_info.get('confidence', 0.0) # 獲取原始的 Places365 信心度
                if places365_original_confidence > 0.7:
                    boost_factor = min(0.2, (places365_original_confidence - 0.7) * 0.4)
                    current_places365_weight += boost_factor
                    total_other_weight = current_yolo_weight + current_clip_weight
                    if total_other_weight > 0:
                        reduction_factor = boost_factor / total_other_weight
                        current_yolo_weight *= (1 - reduction_factor)
                        current_clip_weight *= (1 - reduction_factor)

            total_weight = current_yolo_weight + current_clip_weight + current_places365_weight
            if total_weight > 0: # 避免除以零
                current_yolo_weight /= total_weight
                current_clip_weight /= total_weight
                current_places365_weight /= total_weight
            else:
                current_yolo_weight = 1/3
                current_clip_weight = 1/3
                current_places365_weight = 1/3


            fused_score = (yolo_score * current_yolo_weight) + (clip_score * current_clip_weight) + (places365_score * current_places365_weight)

            places365_is_indoor = None
            places365_confidence_for_indoor = 0.0
            effective_is_indoor = is_lighting_indoor
            effective_confidence = lighting_analysis_confidence

            if places365_info and isinstance(places365_info, dict):
                places365_is_indoor = places365_info.get('is_indoor')
                places365_confidence_for_indoor = places365_info.get('confidence', 0.0)

                # Places365 overrides lighting analysis when confidence is high
                if places365_confidence_for_indoor >= 0.8 and places365_is_indoor is not None:
                    effective_is_indoor = places365_is_indoor
                    effective_confidence = places365_confidence_for_indoor

                    # 只在特定場景類型首次處理時輸出調試資訊
                    if scene_type == "intersection" or (scene_type in ["urban_intersection", "street_view"] and scene_type == sorted(all_possible_scene_types)[0]):
                        print(f"DEBUG: Using Places365 indoor/outdoor decision: {places365_is_indoor} (confidence: {places365_confidence_for_indoor:.3f}) over lighting analysis")

            if effective_is_indoor is not None and effective_confidence >= 0.65:
                # Determine if the scene_type is inherently indoor or outdoor based on its definition
                is_defined_as_indoor = "indoor" in scene_definition.get("description", "").lower() or \
                                    any(kw in scene_type.lower() for kw in ["room", "kitchen", "office", "indoor", "library", "cafe", "gym"])
                is_defined_as_outdoor = "outdoor" in scene_definition.get("description", "").lower() or \
                                        any(kw in scene_type.lower() for kw in ["street", "park", "aerial", "beach", "harbor", "intersection", "crosswalk"])

                lighting_adjustment_strength = 0.20 # Max adjustment factor (e.g., 20%)
                # Scale adjustment by how confident the analysis is above the threshold
                adjustment_scale = (effective_confidence - 0.65) / (1.0 - 0.65) # Scale from 0 to 1
                adjustment = lighting_adjustment_strength * adjustment_scale
                adjustment = min(lighting_adjustment_strength, max(0, adjustment)) # Clamp adjustment

                if effective_is_indoor and is_defined_as_outdoor:
                    fused_score *= (1.0 - adjustment)
                elif not effective_is_indoor and is_defined_as_indoor:
                    fused_score *= (1.0 - adjustment)
                elif effective_is_indoor and is_defined_as_indoor:
                    fused_score = min(1.0, fused_score * (1.0 + adjustment * 0.5))
                elif not effective_is_indoor and is_defined_as_outdoor:
                    fused_score = min(1.0, fused_score * (1.0 + adjustment * 0.5))

            fused_scores[scene_type] = min(1.0, max(0.0, fused_score))

        return fused_scores


    def process_unknown_objects(self, detection_result, detected_objects):
        """
        對YOLO未能識別或信心度低的物體進行地標檢測

        Args:
            detection_result: YOLO檢測結果
            detected_objects: 已識別的物體列表

        Returns:
            tuple: (更新後的物體列表, 地標物體列表)
        """
        if not getattr(self, 'enable_landmark', True) or not self.use_clip or not hasattr(self, 'use_landmark_detection') or not self.use_landmark_detection:
            # 未啟用地標識別時,確保返回的物體列表中不包含任何地標物體
            cleaned_objects = [obj for obj in detected_objects if not obj.get("is_landmark", False)]
            return cleaned_objects, []

        try:
            # 獲取原始圖像
            original_image = None
            if detection_result is not None and hasattr(detection_result, 'orig_img'):
                original_image = detection_result.orig_img

            # 檢查原始圖像是否存在
            if original_image is None:
                print("Warning: Original image not available for landmark detection")
                return detected_objects, []

            # 確保原始圖像為PIL格式或可轉換為PIL格式
            if not isinstance(original_image, Image.Image):
                if isinstance(original_image, np.ndarray):
                    try:
                        if original_image.ndim == 3 and original_image.shape[2] == 4:  # RGBA
                            original_image = original_image[:, :, :3]  # 轉換為RGB
                        if original_image.ndim == 2:  # 灰度圖
                            original_image = Image.fromarray(original_image).convert("RGB")
                        else:  # 假設為RGB或BGR
                            original_image = Image.fromarray(original_image)

                        if hasattr(original_image, 'mode') and original_image.mode == 'BGR':  # 從OpenCV明確將BGR轉換為RGB
                            original_image = original_image.convert('RGB')
                    except Exception as e:
                        print(f"Warning: Error converting image for landmark detection: {e}")
                        return detected_objects, []
                else:
                    print(f"Warning: Cannot process image of type {type(original_image)}")
                    return detected_objects, []

            # 獲取圖像維度
            if isinstance(original_image, np.ndarray):
                h, w = original_image.shape[:2]
            elif isinstance(original_image, Image.Image):
                w, h = original_image.size
            else:
                print(f"Warning: Unable to determine image dimensions for type {type(original_image)}")
                return detected_objects, []

            # 收集可能含有地標的區域
            candidate_boxes = []
            low_conf_boxes = []

            # 即使沒有YOLO檢測到的物體,也嘗試進行更詳細的地標分析
            if len(detected_objects) == 0:
                # 創建一個包含整個圖像的框
                full_image_box = [0, 0, w, h]
                low_conf_boxes.append(full_image_box)
                candidate_boxes.append((full_image_box, "full_image"))

                # 加入網格分析以增加檢測成功率
                grid_size = 2  # 2x2網格
                for i in range(grid_size):
                    for j in range(grid_size):
                        # 創建網格框
                        grid_box = [
                            j * w / grid_size,
                            i * h / grid_size,
                            (j + 1) * w / grid_size,
                            (i + 1) * h / grid_size
                        ]
                        low_conf_boxes.append(grid_box)
                        candidate_boxes.append((grid_box, "grid"))

                # 創建更大的中心框(覆蓋中心70%區域)
                center_box = [
                    w * 0.15, h * 0.15,
                    w * 0.85, h * 0.85
                ]
                low_conf_boxes.append(center_box)
                candidate_boxes.append((center_box, "center"))

                print("No YOLO detections, attempting detailed landmark analysis with multiple regions")
            else:
                try:
                    # 獲取原始YOLO檢測結果中的低置信度物體
                    if hasattr(detection_result, 'boxes') and hasattr(detection_result.boxes, 'xyxy') and hasattr(detection_result.boxes, 'conf') and hasattr(detection_result.boxes, 'cls'):
                        all_boxes = detection_result.boxes.xyxy.cpu().numpy() if hasattr(detection_result.boxes.xyxy, 'cpu') else detection_result.boxes.xyxy
                        all_confs = detection_result.boxes.conf.cpu().numpy() if hasattr(detection_result.boxes.conf, 'cpu') else detection_result.boxes.conf
                        all_cls = detection_result.boxes.cls.cpu().numpy() if hasattr(detection_result.boxes.cls, 'cpu') else detection_result.boxes.cls

                        # 收集低置信度區域和可能含有地標的區域(如建築物)
                        for i, (box, conf, cls) in enumerate(zip(all_boxes, all_confs, all_cls)):
                            is_low_conf = conf < 0.4 and conf > 0.1

                            # 根據物體類別 ID 識別建築物 - 使用通用分類
                            common_building_classes = [11, 12, 13, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65]  # 常見建築類別 ID
                            is_building = int(cls) in common_building_classes

                            # 計算相對面積 - 大物體
                            is_large_object = (box[2] - box[0]) * (box[3] - box[1]) > (0.1 * w * h)

                            if is_low_conf or is_building:
                                # 確保 box 是一個有效的數組或列表
                                if isinstance(box, (list, tuple, np.ndarray)) and len(box) >= 4:
                                    low_conf_boxes.append(box)
                                    if is_large_object:
                                        candidate_boxes.append((box, "building" if is_building else "low_conf"))
                except Exception as e:
                    print(f"Error processing YOLO detections: {e}")
                    import traceback
                    traceback.print_exc()

            if not hasattr(self, 'landmark_classifier'):
                if hasattr(self, 'clip_analyzer') and hasattr(self.clip_analyzer, 'get_clip_instance'):
                    try:
                        print("Initializing landmark classifier for process_unknown_objects")
                        model, preprocess, device = self.clip_analyzer.get_clip_instance()
                        self.landmark_classifier = CLIPZeroShotClassifier(device=device)
                    except Exception as e:
                        print(f"Error initializing landmark classifier: {e}")
                        return detected_objects, []
                else:
                    print("Warning: landmark_classifier not available and cannot be initialized")
                    return detected_objects, []

            # 使用智能地標搜索
            landmark_results = None
            try:
                # 確保有有效的框
                if not low_conf_boxes:
                    # 如果沒有低置信度框,添加全圖
                    low_conf_boxes.append([0, 0, w, h])

                landmark_results = self.landmark_classifier.intelligent_landmark_search(
                    original_image,
                    yolo_boxes=low_conf_boxes,
                    base_threshold=0.25
                )
            except Exception as e:
                print(f"Error in intelligent_landmark_search: {e}")
                import traceback
                traceback.print_exc()
                return detected_objects, []

            # 處理識別結果
            landmark_objects = []

            # 如果有效的地標結果
            if landmark_results and landmark_results.get("is_landmark_scene", False):
                for landmark_info in landmark_results.get("detected_landmarks", []):
                    try:
                        # 使用 landmark_classifier 的閾值判斷
                        base_threshold = 0.25  # 基礎閾值

                        # 獲取地標類型並設定閾值
                        landmark_type = "architectural"  # 預設類型
                        type_threshold = 0.5  # 預設閾值

                        # 優先使用 landmark_classifier
                        if hasattr(self, 'landmark_classifier') and hasattr(self.landmark_classifier, '_determine_landmark_type'):
                            landmark_type = self.landmark_classifier._determine_landmark_type(landmark_info.get("landmark_id", ""))
                            type_threshold = getattr(self.landmark_classifier, 'landmark_type_thresholds', {}).get(landmark_type, 0.5)
                        # 否則使用本地方法
                        elif hasattr(self, '_determine_landmark_type'):
                            landmark_type = self._determine_landmark_type(landmark_info.get("landmark_id", ""))
                            # 依據地標類型調整閾值
                            if landmark_type == "skyscraper":
                                type_threshold = 0.4
                            elif landmark_type == "natural":
                                type_threshold = 0.6
                        # 或者直接從地標 ID 推斷
                        else:
                            landmark_id = landmark_info.get("landmark_id", "").lower()
                            if any(term in landmark_id for term in ["mountain", "canyon", "waterfall", "lake", "river", "natural"]):
                                landmark_type = "natural"
                                type_threshold = 0.6
                            elif any(term in landmark_id for term in ["skyscraper", "building", "tower", "tall"]):
                                landmark_type = "skyscraper"
                                type_threshold = 0.4
                            elif any(term in landmark_id for term in ["monument", "memorial", "statue", "historical"]):
                                landmark_type = "monument"
                                type_threshold = 0.5

                        effective_threshold = base_threshold * (type_threshold / 0.5)
                        # 如果置信度足夠高
                        if landmark_info.get("confidence", 0) > effective_threshold:
                            # 獲取邊界框
                            if "box" in landmark_info:
                                box = landmark_info["box"]
                            else:
                                # 如果沒有邊界框,使用整個圖像的90%區域
                                margin_x, margin_y = w * 0.05, h * 0.05
                                box = [margin_x, margin_y, w - margin_x, h - margin_y]

                            # 計算中心點和其他必要信息
                            center_x = (box[0] + box[2]) / 2
                            center_y = (box[1] + box[3]) / 2
                            norm_center_x = center_x / w if w > 0 else 0.5
                            norm_center_y = center_y / h if h > 0 else 0.5

                            # 獲取區域位置
                            region = "center"  # 預設
                            if hasattr(self, 'spatial_analyzer') and hasattr(self.spatial_analyzer, '_determine_region'):
                                try:
                                    region = self.spatial_analyzer._determine_region(norm_center_x, norm_center_y)
                                except Exception as e:
                                    print(f"Error determining region: {e}")

                            # 創建地標物體
                            landmark_obj = {
                                "class_id": landmark_info.get("landmark_id", "")[:15] if isinstance(landmark_info.get("landmark_id", ""), str) else "-100",  # 截斷過長的 ID
                                "class_name": landmark_info.get("landmark_name", "Unknown Landmark"),
                                "confidence": landmark_info.get("confidence", 0.0),
                                "box": box,
                                "center": (center_x, center_y),
                                "normalized_center": (norm_center_x, norm_center_y),
                                "size": (box[2] - box[0], box[3] - box[1]),
                                "normalized_size": (
                                    (box[2] - box[0]) / w if w > 0 else 0,
                                    (box[3] - box[1]) / h if h > 0 else 0
                                ),
                                "area": (box[2] - box[0]) * (box[3] - box[1]),
                                "normalized_area": (
                                    (box[2] - box[0]) * (box[3] - box[1]) / (w * h) if w * h > 0 else 0
                                ),
                                "region": region,
                                "is_landmark": True,
                                "landmark_id": landmark_info.get("landmark_id", ""),
                                "location": landmark_info.get("location", "Unknown Location")
                            }

                            # 添加額外信息
                            for key in ["year_built", "architectural_style", "significance"]:
                                if key in landmark_info:
                                    landmark_obj[key] = landmark_info[key]

                            # 添加地標類型
                            landmark_obj["landmark_type"] = landmark_type

                            # 添加到檢測物體列表
                            detected_objects.append(landmark_obj)
                            landmark_objects.append(landmark_obj)
                            print(f"Detected landmark: {landmark_info.get('landmark_name', 'Unknown')} with confidence {landmark_info.get('confidence', 0.0):.2f}")
                    except Exception as e:
                        print(f"Error processing landmark: {e}")
                        continue

                return detected_objects, landmark_objects

            return detected_objects, []

        except Exception as e:
            print(f"Error in landmark detection: {e}")
            import traceback
            traceback.print_exc()
            return detected_objects, []

    def _remove_landmark_references(self, text):
        """
        從文本中移除所有地標引用

        Args:
            text: 輸入文本

        Returns:
            str: 清除地標引用後的文本
        """
        if not text:
            return text

        import re

        try:
            # 動態收集所有地標名稱和位置
            landmark_names = []
            locations = []

            for landmark_id, info in ALL_LANDMARKS.items():
                # 收集地標名稱及其別名
                landmark_names.append(info["name"])
                landmark_names.extend(info.get("aliases", []))

                # 收集地理位置
                if "location" in info:
                    location = info["location"]
                    locations.append(location)

                    # 處理分離的城市和國家名稱
                    parts = location.split(",")
                    if len(parts) >= 1:
                        locations.append(parts[0].strip())
                    if len(parts) >= 2:
                        locations.append(parts[1].strip())

            # 使用正則表達式動態替換所有地標名稱
            for name in landmark_names:
                if name and len(name) > 2:  # 避免過短的名稱
                    text = re.sub(r'\b' + re.escape(name) + r'\b', "tall structure", text, flags=re.IGNORECASE)

            # 動態替換所有位置引用
            for location in locations:
                if location and len(location) > 2:
                    # 替換常見位置表述模式
                    text = re.sub(r'in ' + re.escape(location), "in the urban area", text, flags=re.IGNORECASE)
                    text = re.sub(r'of ' + re.escape(location), "of the urban area", text, flags=re.IGNORECASE)
                    text = re.sub(r'\b' + re.escape(location) + r'\b', "the urban area", text, flags=re.IGNORECASE)

        except ImportError:
            # 通用地標描述模式
            landmark_patterns = [
                # 地標地點模式
                (r'an iconic structure in ([A-Z][a-zA-Z\s,]+)', r'an urban structure'),
                (r'a famous (monument|tower|landmark) in ([A-Z][a-zA-Z\s,]+)', r'an urban structure'),
                (r'(the [A-Z][a-zA-Z\s]+ Tower)', r'the tower'),
                (r'(the [A-Z][a-zA-Z\s]+ Building)', r'the building'),
                (r'(the CN Tower)', r'the tower'),
                (r'([A-Z][a-zA-Z\s]+) Tower', r'tall structure'),

                # 地標位置關係模式
                (r'(centered|built|located|positioned) around the ([A-Z][a-zA-Z\s]+? (Tower|Monument|Landmark))', r'located in this area'),

                # 地標活動模式
                (r'(sightseeing|guided tours|cultural tourism) (at|around|near) (this landmark|the [A-Z][a-zA-Z\s]+)', r'\1 in this area'),

                # 一般性地標形容模式
                (r'this (famous|iconic|historic|well-known) (landmark|monument|tower|structure)', r'this urban structure'),
                (r'landmark scene', r'urban scene'),
                (r'tourist destination', r'urban area'),
                (r'tourist attraction', r'urban area')
            ]

            for pattern, replacement in landmark_patterns:
                text = re.sub(pattern, replacement, text, flags=re.IGNORECASE)

        return text