File size: 62,938 Bytes
4d1f920
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416

import torch
import clip
from PIL import Image
import numpy as np
from typing import List, Dict, Tuple, Optional, Union, Any

from landmark_data import ALL_LANDMARKS, get_all_landmark_prompts

class CLIPZeroShotClassifier:
    """
    使用CLIP模型進行零樣本分類,專注於識別世界知名地標。
    作為YOLO檢測的補充,處理標準對象檢測無法識別的地標建築。
    """
    def __init__(self, model_name: str = "ViT-L/14", device: str = None):
        """
        初始化CLIP零樣本分類器

        Args:
            model_name: CLIP模型名稱,默認為"ViT-L/14"
            device: 運行設備,None則自動選擇
        """
        # 設置運行設備
        if device is None:
            self.device = "cuda" if torch.cuda.is_available() else "cpu"
        else:
            self.device = device

        print(f"Initializing CLIP Zero-Shot Landmark Classifier ({model_name}) on {self.device}")
        try:
            self.model, self.preprocess = clip.load(model_name, device=self.device)
            print(f"Successfully loaded CLIP model")
        except Exception as e:
            print(f"Error loading CLIP model: {e}")
            raise

        # 加載地標數據
        try:
            self.landmark_data = ALL_LANDMARKS
            self.landmark_prompts = get_all_landmark_prompts()
            print(f"Loaded {len(self.landmark_prompts)} landmark prompts for classification")

            # 預計算地標文本特徵
            self.landmark_text_features = self._precompute_text_features(self.landmark_prompts)

            # 創建地標ID到索引的映射,可快速查找
            self.landmark_id_to_index = {landmark_id: i for i, landmark_id in enumerate(ALL_LANDMARKS.keys())}

            # 初始化批處理參數
            self.batch_size = 16  # 默認批處理大小
            self.confidence_threshold_multipliers = {
                "close_up": 0.9,     # 近景標準閾值
                "partial": 0.6,      # 部分可見降低閾值要求
                "distant": 0.5,      # 遠景更低閾值要求
                "full_image": 0.7    # 整張圖像需要更高閾值
            }

            self.landmark_type_thresholds = {
                "tower": 0.5,         # 塔型建築需要更高閾值
                "skyscraper": 0.4,    # 摩天大樓使用較低閾值
                "building": 0.55,     # 一般建築物閾值略微降低
                "monument": 0.5,      # 紀念碑閾值
                "natural": 0.6        # 自然地標可以使用較低閾值
            }

            # 初始化結果快取
            self.results_cache = {}  # 使用圖像hash作為鍵
            self.cache_max_size = 100  # 最大快取項目數

        except ImportError:
            print("Warning: landmark_data.py not found. Landmark classification will be limited")
            self.landmark_data = {}
            self.landmark_prompts = []
            self.landmark_text_features = None
            self.landmark_id_to_index = {}
            self.results_cache = {}

    def _get_image_hash(self, image):
        """
        為圖像生成簡單的 hash 值用於快取

        Args:
            image: PIL Image 或 numpy 數組

        Returns:
            str: 圖像的 hash 值
        """
        if isinstance(image, np.ndarray):
            # 對於 numpy 數組,降採樣並計算簡單 hash
            small_img = image[::10, ::10] if image.ndim == 3 else image
            return hash(small_img.tobytes())
        else:
            # 對於 PIL 圖像,調整大小後轉換為 bytes
            small_img = image.resize((32, 32))
            return hash(small_img.tobytes())

    def _manage_cache(self):
        """
        管理結果快取大小
        """
        if len(self.results_cache) > self.cache_max_size:
            oldest_key = next(iter(self.results_cache))
            del self.results_cache[oldest_key]

    def set_batch_size(self, batch_size: int):
        """
        設置批處理大小

        Args:
            batch_size: 新的批處理大小
        """
        self.batch_size = max(1, batch_size)
        print(f"Batch size set to {self.batch_size}")


    def adjust_confidence_threshold(self, detection_type: str, multiplier: float):
        """
        調整特定檢測類型的置信度閾值乘數

        Args:
            detection_type: 檢測類型 ('close_up', 'partial', 'distant', 'full_image')
            multiplier: 置信度閾值乘數
        """
        if detection_type in self.confidence_threshold_multipliers:
            self.confidence_threshold_multipliers[detection_type] = max(0.1, min(1.5, multiplier))
            print(f"Adjusted confidence threshold multiplier for {detection_type} to {multiplier}")
        else:
            print(f"Unknown detection type: {detection_type}")


    def _precompute_text_features(self, text_prompts: List[str]) -> torch.Tensor:
        """
        預計算文本提示的CLIP特徵,提高批處理效率

        Args:
            text_prompts: 文本提示列表

        Returns:
            torch.Tensor: 預計算的文本特徵
        """
        if not text_prompts:
            return None

        with torch.no_grad():
            # Process in batches to avoid CUDA memory issues
            batch_size = 128  # Adjust based on GPU memory
            features_list = []

            for i in range(0, len(text_prompts), batch_size):
                batch_prompts = text_prompts[i:i+batch_size]
                text_tokens = clip.tokenize(batch_prompts).to(self.device)
                batch_features = self.model.encode_text(text_tokens)
                batch_features = batch_features / batch_features.norm(dim=-1, keepdim=True)
                features_list.append(batch_features)

            # Concatenate all batches
            if len(features_list) > 1:
                text_features = torch.cat(features_list, dim=0)
            else:
                text_features = features_list[0]

        return text_features

    def _perform_pyramid_analysis(self,
                         image: Union[Image.Image, np.ndarray],
                         levels: int = 4,
                         base_threshold: float = 0.25,
                         aspect_ratios: List[float] = [1.0, 0.75, 1.5]) -> Dict[str, Any]:
        """
        Performs multi-scale pyramid analysis on the image to improve landmark detection.

        Args:
            image: Input image
            levels: Number of pyramid levels
            base_threshold: Base confidence threshold
            aspect_ratios: Different aspect ratios to try (for tall buildings vs wide landscapes)

        Returns:
            Dict: Results of pyramid analysis
        """
        # Ensure image is PIL format
        if not isinstance(image, Image.Image):
            if isinstance(image, np.ndarray):
                image = Image.fromarray(image)
            else:
                raise ValueError("Unsupported image format. Expected PIL Image or numpy array.")

        width, height = image.size
        pyramid_results = []

        # 對每個縮放和縱橫比組合進行處理
        for level in range(levels):
            # 計算縮放因子
            scale_factor = 1.0 - (level * 0.2)

            for aspect_ratio in aspect_ratios:
                # 計算新尺寸,保持面積近似不變
                if aspect_ratio != 1.0:
                    # 保持面積近似不變的情況下調整縱橫比
                    new_width = int(width * scale_factor * (1/aspect_ratio)**0.5)
                    new_height = int(height * scale_factor * aspect_ratio**0.5)
                else:
                    new_width = int(width * scale_factor)
                    new_height = int(height * scale_factor)

                # 調整圖像大小
                scaled_image = image.resize((new_width, new_height), Image.LANCZOS)

                # 預處理圖像
                image_input = self.preprocess(scaled_image).unsqueeze(0).to(self.device)

                # 獲取圖像特徵
                with torch.no_grad():
                    image_features = self.model.encode_image(image_input)
                    image_features = image_features / image_features.norm(dim=-1, keepdim=True)

                    # 計算相似度
                    similarity = (100.0 * image_features @ self.landmark_text_features.T).softmax(dim=-1)
                    similarity = similarity.cpu().numpy()[0] if self.device == "cuda" else similarity.numpy()[0]

                # 找到最佳匹配
                best_idx = similarity.argmax().item()
                best_score = similarity[best_idx]

                if best_score >= base_threshold:
                    landmark_id = list(self.landmark_data.keys())[best_idx]
                    landmark_info = self.landmark_data[landmark_id]

                    pyramid_results.append({
                        "landmark_id": landmark_id,
                        "landmark_name": landmark_info["name"],
                        "confidence": float(best_score),
                        "scale_factor": scale_factor,
                        "aspect_ratio": aspect_ratio,
                        "location": landmark_info["location"]
                    })

        # 按置信度排序
        pyramid_results.sort(key=lambda x: x["confidence"], reverse=True)

        return {
            "is_landmark": len(pyramid_results) > 0,
            "results": pyramid_results,
            "best_result": pyramid_results[0] if pyramid_results else None
        }

    def _enhance_features(self, image: Union[Image.Image, np.ndarray]) -> Image.Image:
        """
        Enhances image features to improve landmark detection.

        Args:
            image: Input image

        Returns:
            PIL.Image: Enhanced image
        """
        # Ensure image is PIL format
        if not isinstance(image, Image.Image):
            if isinstance(image, np.ndarray):
                image = Image.fromarray(image)
            else:
                raise ValueError("Unsupported image format. Expected PIL Image or numpy array.")

        # Convert to numpy for processing
        img_array = np.array(image)

        # Skip processing for grayscale images
        if len(img_array.shape) < 3:
            return image

        # Apply adaptive contrast enhancement
        # Convert to LAB color space
        from skimage import color, exposure
        try:
            # Convert to LAB color space
            if img_array.shape[2] == 4:  # Handle RGBA
                img_array = img_array[:,:,:3]

            lab = color.rgb2lab(img_array[:,:,:3] / 255.0)
            l_channel = lab[:,:,0]

            # Enhance contrast of L channel
            p2, p98 = np.percentile(l_channel, (2, 98))
            l_channel_enhanced = exposure.rescale_intensity(l_channel, in_range=(p2, p98))

            # Replace L channel and convert back to RGB
            lab[:,:,0] = l_channel_enhanced
            enhanced_img = color.lab2rgb(lab) * 255.0
            enhanced_img = enhanced_img.astype(np.uint8)

            return Image.fromarray(enhanced_img)
        except ImportError:
            print("Warning: skimage not available for feature enhancement")
            return image
        except Exception as e:
            print(f"Error in feature enhancement: {e}")
            return image

    def _determine_landmark_type(self, landmark_id):
        """
        自動判斷地標類型,基於地標數據和命名

        Returns:
            str: 地標類型,用於調整閾值
        """
        if not landmark_id:
            return "building"  # 預設類型

        # 獲取地標詳細數據
        landmark_data = self.landmark_data if hasattr(self, 'landmark_data') else {}
        landmark_info = landmark_data.get(landmark_id, {})

        # 獲取地標相關文本
        landmark_id_lower = landmark_id.lower()
        landmark_name = landmark_info.get("name", "").lower()
        landmark_location = landmark_info.get("location", "").lower()
        landmark_aliases = [alias.lower() for alias in landmark_info.get("aliases", [])]

        # 合併所有文本數據用於特徵判斷
        combined_text = " ".join([landmark_id_lower, landmark_name] + landmark_aliases)

        # 地標類型的特色特徵
        type_features = {
            "skyscraper": ["skyscraper", "tall", "tower", "高樓", "摩天", "大厦", "タワー"],
            "tower": ["tower", "bell", "clock", "塔", "鐘樓", "タワー", "campanile"],
            "monument": ["monument", "memorial", "statue", "紀念", "雕像", "像", "memorial"],
            "natural": ["mountain", "lake", "canyon", "falls", "beach", "山", "湖", "峽谷", "瀑布", "海灘"],
            "temple": ["temple", "shrine", "寺", "神社", "廟"],
            "palace": ["palace", "castle", "宮", "城", "皇宮", "宫殿"],
            "distinctive": ["unique", "leaning", "slanted", "傾斜", "斜", "獨特", "傾く"]
        }

        # 檢查是否位於亞洲地區
        asian_regions = ["china", "japan", "korea", "taiwan", "singapore", "vietnam", "thailand",
                        "hong kong", "中國", "日本", "韓國", "台灣", "新加坡", "越南", "泰國", "香港"]
        is_asian = any(region in landmark_location for region in asian_regions)

        # 判斷地標類型
        best_type = None
        max_matches = 0

        for type_name, features in type_features.items():
            # 計算特徵詞匹配數量
            matches = sum(1 for feature in features if feature in combined_text)
            if matches > max_matches:
                max_matches = matches
                best_type = type_name

        # 處理亞洲地區特例
        if is_asian and best_type == "tower":
            best_type = "skyscraper"  # 亞洲地區的塔型建築閾值較低

        # 特例處理:檢測傾斜建築
        if any(term in combined_text for term in ["leaning", "slanted", "tilt", "inclined", "斜", "傾斜"]):
            return "distinctive"  # 傾斜建築需要特殊處理

        return best_type if best_type and max_matches > 0 else "building"  # 預設為一般建築

    def classify_image_region(self,
                    image: Union[Image.Image, np.ndarray],
                    box: List[float],
                    threshold: float = 0.25,
                    detection_type: str = "close_up") -> Dict[str, Any]:
        """
        對圖像的特定區域進行地標分類,具有增強的多尺度和部分識別能力

        Args:
            image: 原始圖像 (PIL Image 或 numpy數組)
            box: 邊界框 [x1, y1, x2, y2]
            threshold: 基礎分類置信度閾值
            detection_type: 檢測類型,影響置信度調整

        Returns:
            Dict: 地標分類結果
        """
        # 確保圖像是PIL格式
        if not isinstance(image, Image.Image):
            if isinstance(image, np.ndarray):
                image = Image.fromarray(image)
            else:
                raise ValueError("Unsupported image format. Expected PIL Image or numpy array.")

        # 生成圖像區域的hash用於快取
        region_key = (self._get_image_hash(image), tuple(box), detection_type)
        if region_key in self.results_cache:
            return self.results_cache[region_key]

        # 裁剪區域
        x1, y1, x2, y2 = map(int, box)
        cropped_image = image.crop((x1, y1, x2, y2))
        enhanced_image = self._enhance_features(cropped_image)

        # 分析視角信息
        viewpoint_info = self._analyze_viewpoint(enhanced_image)
        dominant_viewpoint = viewpoint_info["dominant_viewpoint"]

        # 計算區域信息
        region_width = x2 - x1
        region_height = y2 - y1
        image_width, image_height = image.size

        # 根據區域大小判斷可能的檢測類型
        region_area_ratio = (region_width * region_height) / (image_width * image_height)
        if detection_type == "auto":
            if region_area_ratio > 0.5:
                detection_type = "close_up"
            elif region_area_ratio > 0.2:
                detection_type = "partial"
            else:
                detection_type = "distant"

        # 根據視角調整檢測類型
        if dominant_viewpoint == "close_up" and detection_type != "close_up":
            detection_type = "close_up"
        elif dominant_viewpoint == "distant" and detection_type != "distant":
            detection_type = "distant"
        elif dominant_viewpoint == "angled_view":
            detection_type = "partial"  # 角度視圖可能是部分可見

        # 調整置信度閾值
        base_multiplier = self.confidence_threshold_multipliers.get(detection_type, 1.0)
        adjusted_threshold = threshold * base_multiplier

        # 調整多尺度處理的尺度範圍和縱橫比 - 增強對傾斜建築的支持
        scales = [1.0]  # 默認尺度

        # 基於視角選擇合適的尺度和縱橫比
        if detection_type in ["partial", "distant"]:
            scales = [0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3]  # 標準範圍

        # 如果是特殊視角,進一步調整尺度和縱橫比 - 新增
        if dominant_viewpoint in ["angled_view", "low_angle"]:
            scales = [0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4]  # 更寬的範圍

        # 準備縱橫比 - 同時支持水平和垂直地標
        aspect_ratios = [1.0, 0.8, 1.2]  # 標準縱橫比

        # 針對可能的傾斜建築增加更多縱橫比 - 新增
        if dominant_viewpoint in ["angled_view", "unique_feature"]:
            aspect_ratios = [0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.5]  # 更多樣的縱橫比

        best_result = {
            "landmark_id": None,
            "landmark_name": None,
            "confidence": 0.0,
            "is_landmark": False
        }

        # 多尺度和縱橫比分析
        for scale in scales:
            for aspect_ratio in aspect_ratios:
                # 縮放裁剪區域
                current_width, current_height = cropped_image.size

                # 計算新尺寸,保持面積不變但調整縱橫比
                if aspect_ratio != 1.0:
                    new_width = int(current_width * scale * (1/aspect_ratio)**0.5)
                    new_height = int(current_height * scale * aspect_ratio**0.5)
                else:
                    new_width = int(current_width * scale)
                    new_height = int(current_height * scale)

                # 確保尺寸至少為1像素
                new_width = max(1, new_width)
                new_height = max(1, new_height)

                # 縮放圖像
                try:
                    scaled_image = cropped_image.resize((new_width, new_height), Image.LANCZOS)
                except Exception as e:
                    print(f"Failed to resize image to {new_width}x{new_height}: {e}")
                    continue

                # 預處理裁剪圖像
                try:
                    image_input = self.preprocess(scaled_image).unsqueeze(0).to(self.device)
                except Exception as e:
                    print(f"Failed to preprocess image: {e}")
                    continue

                # 獲取圖像特徵
                with torch.no_grad():
                    try:
                        image_features = self.model.encode_image(image_input)
                        image_features = image_features / image_features.norm(dim=-1, keepdim=True)

                        # 計算與地標提示的相似度
                        similarity = (100.0 * image_features @ self.landmark_text_features.T).softmax(dim=-1)
                        similarity = similarity.cpu().numpy()[0] if self.device == "cuda" else similarity.numpy()[0]

                        # 找到最佳匹配
                        best_idx = similarity.argmax().item()
                        best_score = similarity[best_idx]

                        # 如果當前尺度結果更好,則更新
                        if best_score > best_result["confidence"]:
                            landmark_id = list(self.landmark_data.keys())[best_idx]
                            landmark_info = self.landmark_data[landmark_id]

                            best_result = {
                                "landmark_id": landmark_id,
                                "landmark_name": landmark_info["name"],
                                "location": landmark_info["location"],
                                "confidence": float(best_score),
                                "is_landmark": best_score >= adjusted_threshold,
                                "scale_used": scale,
                                "aspect_ratio_used": aspect_ratio,
                                "viewpoint": dominant_viewpoint
                            }

                            # 添加額外可用信息
                            for key in ["year_built", "architectural_style", "significance"]:
                                if key in landmark_info:
                                    best_result[key] = landmark_info[key]
                    except Exception as e:
                        print(f"Error in calculating similarity: {e}")
                        continue

        # 只有在有識別出地標ID且信心度足夠高時才應用地標類型閾值調整
        if best_result["landmark_id"]:
            landmark_type = self._determine_landmark_type(best_result["landmark_id"])

            # 檢測是否為特殊類型的建築如斜塔
            if landmark_type == "distinctive":
                # 特殊建築的閾值降低25%
                type_multiplier = 0.75
            else:
                # 使用已有的類型閾值
                type_multiplier = self.landmark_type_thresholds.get(landmark_type, 1.0) / 0.5

            # 更新判斷是否為地標的標準
            final_threshold = adjusted_threshold * type_multiplier
            best_result["is_landmark"] = best_result["confidence"] >= final_threshold
            best_result["landmark_type"] = landmark_type  # 添加地標類型信息
            best_result["threshold_applied"] = final_threshold  # 記錄應用的閾值

        # 快取結果
        self.results_cache[region_key] = best_result
        self._manage_cache()

        return best_result

    def classify_batch_regions(self,
                              image: Union[Image.Image, np.ndarray],
                              boxes: List[List[float]],
                              threshold: float = 0.28) -> List[Dict[str, Any]]:
        """
        批量處理多個圖像區域,提高效率

        Args:
            image: 原始圖像
            boxes: 邊界框列表
            threshold: 置信度閾值

        Returns:
            List[Dict]: 分類結果列表
        """
        if not self.landmark_text_features is not None:
            return [{"is_landmark": False, "confidence": 0.0} for _ in boxes]

        # 確保圖像是PIL格式
        if not isinstance(image, Image.Image):
            if isinstance(image, np.ndarray):
                image = Image.fromarray(image)
            else:
                raise ValueError("Unsupported image format. Expected PIL Image or numpy array.")

        # 無框可處理時
        if not boxes:
            return []

        # 裁剪並預處理所有區域
        cropped_inputs = []
        for box in boxes:
            x1, y1, x2, y2 = map(int, box)
            cropped_image = image.crop((x1, y1, x2, y2))
            processed_image = self.preprocess(cropped_image).unsqueeze(0)
            cropped_inputs.append(processed_image)

        # batch process
        batch_tensor = torch.cat(cropped_inputs).to(self.device)

        # batch encoding
        with torch.no_grad():
            image_features = self.model.encode_image(batch_tensor)
            image_features = image_features / image_features.norm(dim=-1, keepdim=True)

            # 計算相似度
            similarity = (100.0 * image_features @ self.landmark_text_features.T).softmax(dim=-1)
            similarity = similarity.cpu().numpy() if self.device == "cuda" else similarity.numpy()

        # 處理每個區域的結果
        results = []
        for i, sim in enumerate(similarity):
            best_idx = sim.argmax().item()
            best_score = sim[best_idx]

            if best_score >= threshold:
                landmark_id = list(self.landmark_data.keys())[best_idx]
                landmark_info = self.landmark_data[landmark_id]

                results.append({
                    "landmark_id": landmark_id,
                    "landmark_name": landmark_info["name"],
                    "location": landmark_info["location"],
                    "confidence": float(best_score),
                    "is_landmark": True,
                    "box": boxes[i]
                })
            else:
                results.append({
                    "landmark_id": None,
                    "landmark_name": None,
                    "confidence": float(best_score),
                    "is_landmark": False,
                    "box": boxes[i]
                })

        return results

    def search_entire_image(self,
                        image: Union[Image.Image, np.ndarray],
                        threshold: float = 0.35,
                        detailed_analysis: bool = False) -> Dict[str, Any]:
        """
        檢查整張圖像是否包含地標,具有增強的分析能力

        Args:
            image: 原始圖像
            threshold: 置信度閾值
            detailed_analysis: 是否進行詳細分析,包括多區域檢測

        Returns:
            Dict: 地標分類結果
        """
        # 確保圖像是PIL格式
        if not isinstance(image, Image.Image):
            if isinstance(image, np.ndarray):
                image = Image.fromarray(image)
            else:
                raise ValueError("Unsupported image format. Expected PIL Image or numpy array.")

        # 檢查快取
        image_key = (self._get_image_hash(image), "entire_image", detailed_analysis)
        if image_key in self.results_cache:
            return self.results_cache[image_key]

        # 調整閾值
        adjusted_threshold = threshold * self.confidence_threshold_multipliers.get("full_image", 1.0)

        # 預處理圖像
        image_input = self.preprocess(image).unsqueeze(0).to(self.device)

        # 獲取圖像特徵
        with torch.no_grad():
            image_features = self.model.encode_image(image_input)
            image_features = image_features / image_features.norm(dim=-1, keepdim=True)

            # 計算與地標提示的相似度
            similarity = (100.0 * image_features @ self.landmark_text_features.T).softmax(dim=-1)
            similarity = similarity.cpu().numpy()[0] if self.device == "cuda" else similarity.numpy()[0]

        # 找到最佳匹配
        best_idx = similarity.argmax().item()
        best_score = similarity[best_idx]

        # top3 landmark
        top_indices = similarity.argsort()[-3:][::-1]
        top_landmarks = []

        for idx in top_indices:
            score = similarity[idx]
            landmark_id = list(self.landmark_data.keys())[idx]
            landmark_info = self.landmark_data[landmark_id]

            landmark_result = {
                "landmark_id": landmark_id,
                "landmark_name": landmark_info["name"],
                "location": landmark_info["location"],
                "confidence": float(score)
            }

            # 添加額外可用信息
            if "year_built" in landmark_info:
                landmark_result["year_built"] = landmark_info["year_built"]
            if "architectural_style" in landmark_info:
                landmark_result["architectural_style"] = landmark_info["architectural_style"]
            if "significance" in landmark_info:
                landmark_result["significance"] = landmark_info["significance"]

            top_landmarks.append(landmark_result)

        # main result
        result = {}
        if best_score >= adjusted_threshold:
            landmark_id = list(self.landmark_data.keys())[best_idx]
            landmark_info = self.landmark_data[landmark_id]

            # 應用地標類型特定閾值
            landmark_type = self._determine_landmark_type(landmark_id)
            type_multiplier = self.landmark_type_thresholds.get(landmark_type, 1.0) / 0.5
            final_threshold = adjusted_threshold * type_multiplier

            if best_score >= final_threshold:
                result = {
                    "landmark_id": landmark_id,
                    "landmark_name": landmark_info["name"],
                    "location": landmark_info["location"],
                    "confidence": float(best_score),
                    "is_landmark": True,
                    "landmark_type": landmark_type,
                    "top_landmarks": top_landmarks
                }

                # 添加額外可用信息
                if "year_built" in landmark_info:
                    result["year_built"] = landmark_info["year_built"]
                if "architectural_style" in landmark_info:
                    result["architectural_style"] = landmark_info["architectural_style"]
                if "significance" in landmark_info:
                    result["significance"] = landmark_info["significance"]
            else:
                result = {
                    "landmark_id": None,
                    "landmark_name": None,
                    "confidence": float(best_score),
                    "is_landmark": False,
                    "top_landmarks": top_landmarks
                }

        # 如果請求詳細分析且是地標,進一步分析圖像區域
        if detailed_analysis and result.get("is_landmark", False):
            # 創建不同區域進行更深入分析
            width, height = image.size
            regions = [
                # 中心區域
                [width * 0.25, height * 0.25, width * 0.75, height * 0.75],
                # 左半部
                [0, 0, width * 0.5, height],
                # 右半部
                [width * 0.5, 0, width, height],
                # 上半部
                [0, 0, width, height * 0.5],
                # 下半部
                [0, height * 0.5, width, height]
            ]

            region_results = []
            for i, box in enumerate(regions):
                region_result = self.classify_image_region(
                    image,
                    box,
                    threshold=threshold * 0.9,
                    detection_type="partial"
                )
                if region_result["is_landmark"]:
                    region_result["region_name"] = ["center", "left", "right", "top", "bottom"][i]
                    region_results.append(region_result)

            # 添加區域分析結果
            if region_results:
                result["region_analyses"] = region_results

        # 快取結果
        self.results_cache[image_key] = result
        self._manage_cache()

        return result

    def enhanced_landmark_detection(self,
                              image: Union[Image.Image, np.ndarray],
                              threshold: float = 0.3) -> Dict[str, Any]:
        """
        Enhanced landmark detection using multiple analysis techniques.

        Args:
            image: Input image
            threshold: Base confidence threshold

        Returns:
            Dict: Comprehensive landmark detection results
        """
        # Ensure image is PIL format
        if not isinstance(image, Image.Image):
            if isinstance(image, np.ndarray):
                image = Image.fromarray(image)
            else:
                raise ValueError("Unsupported image format. Expected PIL Image or numpy array.")

        # Phase 1: Analyze viewpoint to adjust detection parameters
        viewpoint_info = self._analyze_viewpoint(image)
        viewpoint = viewpoint_info["dominant_viewpoint"]

        # Adjust threshold based on viewpoint
        if viewpoint == "distant":
            adjusted_threshold = threshold * 0.7  # Lower threshold for distant views
        elif viewpoint == "close_up":
            adjusted_threshold = threshold * 1.1  # Higher threshold for close-ups
        else:
            adjusted_threshold = threshold

        # Phase 2: Perform multi-scale pyramid analysis
        pyramid_results = self._perform_pyramid_analysis(image, levels=3, base_threshold=adjusted_threshold)

        # Phase 3: Perform grid-based region analysis
        grid_results = []
        width, height = image.size

        # Create adaptive grid based on viewpoint
        if viewpoint == "distant":
            grid_size = 3  # Coarser grid for distant views
        elif viewpoint == "close_up":
            grid_size = 5  # Finer grid for close-ups
        else:
            grid_size = 4  # Default grid size

        # Generate grid regions
        for i in range(grid_size):
            for j in range(grid_size):
                box = [
                    width * (j/grid_size),
                    height * (i/grid_size),
                    width * ((j+1)/grid_size),
                    height * ((i+1)/grid_size)
                ]

                # Apply feature enhancement
                region_result = self.classify_image_region(
                    image,
                    box,
                    threshold=adjusted_threshold,
                    detection_type="auto"
                )

                if region_result["is_landmark"]:
                    region_result["grid_position"] = (i, j)
                    grid_results.append(region_result)

        # Phase 4: Cross-validate and combine results
        all_detections = []

        # Add pyramid results
        if pyramid_results["is_landmark"] and pyramid_results["best_result"]:
            all_detections.append({
                "source": "pyramid",
                "landmark_id": pyramid_results["best_result"]["landmark_id"],
                "landmark_name": pyramid_results["best_result"]["landmark_name"],
                "confidence": pyramid_results["best_result"]["confidence"],
                "scale_factor": pyramid_results["best_result"].get("scale_factor", 1.0)
            })

        # Add grid results
        for result in grid_results:
            all_detections.append({
                "source": "grid",
                "landmark_id": result["landmark_id"],
                "landmark_name": result["landmark_name"],
                "confidence": result["confidence"],
                "grid_position": result.get("grid_position", (0, 0))
            })

        # Search entire image
        full_image_result = self.search_entire_image(image, threshold=adjusted_threshold)
        if full_image_result and full_image_result.get("is_landmark", False):
            all_detections.append({
                "source": "full_image",
                "landmark_id": full_image_result["landmark_id"],
                "landmark_name": full_image_result["landmark_name"],
                "confidence": full_image_result["confidence"]
            })

        # Group by landmark_id and calculate aggregate confidence
        landmark_groups = {}
        for detection in all_detections:
            landmark_id = detection["landmark_id"]
            if landmark_id not in landmark_groups:
                landmark_groups[landmark_id] = {
                    "landmark_id": landmark_id,
                    "landmark_name": detection["landmark_name"],
                    "detections": [],
                    "sources": set()
                }

            landmark_groups[landmark_id]["detections"].append(detection)
            landmark_groups[landmark_id]["sources"].add(detection["source"])

        # Calculate aggregate confidence for each landmark
        for landmark_id, group in landmark_groups.items():
            detections = group["detections"]

            # Base confidence is the maximum confidence from any source
            max_confidence = max(d["confidence"] for d in detections)

            # Bonus for detection from multiple sources
            source_count = len(group["sources"])
            source_bonus = min(0.15, (source_count - 1) * 0.05)  # Up to 15% bonus

            # Consistency bonus for multiple detections of the same landmark
            detection_count = len(detections)
            consistency_bonus = min(0.1, (detection_count - 1) * 0.02)  # Up to 10% bonus

            # Calculate final confidence
            aggregate_confidence = min(1.0, max_confidence + source_bonus + consistency_bonus)

            group["confidence"] = aggregate_confidence
            group["detection_count"] = detection_count
            group["source_count"] = source_count

        # Sort landmarks by confidence
        sorted_landmarks = sorted(
            landmark_groups.values(),
            key=lambda x: x["confidence"],
            reverse=True
        )

        return {
            "is_landmark_scene": len(sorted_landmarks) > 0,
            "detected_landmarks": sorted_landmarks,
            "viewpoint_info": viewpoint_info,
            "primary_landmark": sorted_landmarks[0] if sorted_landmarks else None
        }

    def _analyze_architectural_features(self, image):
        """
        Analyzes the architectural features of a structure in the image without hardcoding specific landmarks.

        Args:
            image: Input image

        Returns:
            Dict: Architectural feature analysis results
        """
        # Define universal architectural feature prompts that apply to all types of landmarks
        architecture_prompts = {
            "tall_structure": "a tall vertical structure standing alone",
            "tiered_building": "a building with multiple stacked tiers or segments",
            "historical_structure": "a building with historical architectural elements",
            "modern_design": "a modern structure with contemporary architectural design",
            "segmented_exterior": "a structure with visible segmented or sectioned exterior",
            "viewing_platform": "a tall structure with observation area at the top",
            "time_display": "a structure with timepiece features",
            "glass_facade": "a building with prominent glass exterior surfaces",
            "memorial_structure": "a monument or memorial structure",
            "ancient_construction": "ancient constructed elements or archaeological features",
            "natural_landmark": "a natural geographic formation or landmark",
            "slanted_design": "a structure with non-vertical or leaning profile"
        }

        # Calculate similarity scores against universal architectural patterns
        context_scores = self.calculate_similarity_scores(image, architecture_prompts)

        # Determine most relevant architectural features
        top_features = sorted(context_scores.items(), key=lambda x: x[1], reverse=True)[:3]

        # Calculate feature confidence
        context_confidence = sum(score for _, score in top_features) / 3

        # Determine primary architectural category based on top features
        architectural_categories = {
            "tower": ["tall_structure", "viewing_platform", "time_display"],
            "skyscraper": ["tall_structure", "modern_design", "glass_facade"],
            "historical": ["historical_structure", "ancient_construction", "memorial_structure"],
            "natural": ["natural_landmark"],
            "distinctive": ["tiered_building", "segmented_exterior", "slanted_design"]
        }

        # Score each category based on the top features
        category_scores = {}
        for category, features in architectural_categories.items():
            category_score = 0
            for feature, score in context_scores.items():
                if feature in features:
                    category_score += score
            category_scores[category] = category_score

        primary_category = max(category_scores.items(), key=lambda x: x[1])[0]

        return {
            "architectural_features": top_features,
            "context_confidence": context_confidence,
            "primary_category": primary_category,
            "category_scores": category_scores
        }

    def intelligent_landmark_search(self,
                                image: Union[Image.Image, np.ndarray],
                                yolo_boxes: Optional[List[List[float]]] = None,
                                base_threshold: float = 0.25) -> Dict[str, Any]:
        """
        對圖像進行智能地標搜索,綜合整張圖像分析和區域分析

        Args:
            image: 原始圖像
            yolo_boxes: YOLO檢測到的邊界框 (可選)
            base_threshold: 基礎置信度閾值

        Returns:
            Dict: 包含所有檢測結果的綜合分析
        """
        # 確保圖像是PIL格式
        if not isinstance(image, Image.Image):
            if isinstance(image, np.ndarray):
                image = Image.fromarray(image)
            else:
                raise ValueError("Unsupported image format. Expected PIL Image or numpy array.")

        # No YOLO 框時,可以稍微降低閾值以提高召回率
        actual_threshold = base_threshold * 0.85 if yolo_boxes is None or len(yolo_boxes) == 0 else base_threshold

        # 首先對整張圖像進行分析
        try:
            full_image_result = self.search_entire_image(
                image,
                threshold=actual_threshold,
                detailed_analysis=True  # 確保詳細分析開啟
            )

            # No YOLO 框,則進行多尺度分析以提高檢測機會
            if (yolo_boxes is None or len(yolo_boxes) == 0) and (not full_image_result or not full_image_result.get("is_landmark", False)):
                print("No YOLO boxes provided, attempting multi-scale pyramid analysis")
                try:
                    if hasattr(self, '_perform_pyramid_analysis'):
                        pyramid_results = self._perform_pyramid_analysis(
                            image,
                            levels=4,  #
                            base_threshold=actual_threshold,
                            aspect_ratios=[1.0, 0.75, 1.5, 0.5, 2.0]
                        )

                        if pyramid_results and pyramid_results.get("is_landmark", False) and pyramid_results.get("best_result", {}).get("confidence", 0) > actual_threshold:
                            # 使用金字塔分析結果增強或替代全圖結果
                            if not full_image_result or not full_image_result.get("is_landmark", False):
                                full_image_result = {
                                    "is_landmark": True,
                                    "landmark_id": pyramid_results["best_result"]["landmark_id"],
                                    "landmark_name": pyramid_results["best_result"]["landmark_name"],
                                    "confidence": pyramid_results["best_result"]["confidence"],
                                    "location": pyramid_results["best_result"].get("location", "Unknown Location")
                                }
                                print(f"Pyramid analysis detected landmark: {pyramid_results['best_result']['landmark_name']} with confidence {pyramid_results['best_result']['confidence']:.3f}")
                    else:
                        print("Pyramid analysis not available, skipping multi-scale detection")
                except Exception as e:
                    print(f"Error in pyramid analysis: {e}")
        except Exception as e:
            print(f"Error in search_entire_image: {e}")
            import traceback
            traceback.print_exc()
            full_image_result = None

        # 初始化結果字典
        result = {
            "full_image_analysis": full_image_result if full_image_result else {},
            "is_landmark_scene": False,  # 默認值
            "detected_landmarks": []
        }

        # 上下文感知比較,處理接近的排名結果
        if full_image_result and "top_landmarks" in full_image_result and len(full_image_result["top_landmarks"]) >= 2:
            top_landmarks = full_image_result["top_landmarks"]

            # 檢查前兩個結果是否非常接近(信心度差異小於 0.1)
            if len(top_landmarks) >= 2 and abs(top_landmarks[0]["confidence"] - top_landmarks[1]["confidence"]) < 0.1:
                # 對於接近的結果,使用通用建築特徵分析進行區分
                try:
                    # 分析建築特徵
                    if hasattr(self, '_analyze_architectural_features'):
                        architectural_analysis = self._analyze_architectural_features(image)
                        top_features = architectural_analysis.get("architectural_features", [])
                        primary_category = architectural_analysis.get("primary_category", "")

                        # 根據建築特徵調整地標置信度
                        for i, landmark in enumerate(top_landmarks[:2]):
                            if i >= len(top_landmarks):
                                continue

                            landmark_id = landmark.get("landmark_id", "").lower()
                            confidence_boost = 0

                            # 使用主要建築類別來調整置信度,使用通用條件而非特定地標名稱
                            if primary_category == "tower" and any(term in landmark_id for term in ["tower", "spire", "needle"]):
                                confidence_boost += 0.05
                            elif primary_category == "skyscraper" and any(term in landmark_id for term in ["building", "skyscraper", "tall"]):
                                confidence_boost += 0.05
                            elif primary_category == "historical" and any(term in landmark_id for term in ["monument", "castle", "palace", "temple"]):
                                confidence_boost += 0.05
                            elif primary_category == "distinctive" and any(term in landmark_id for term in ["unusual", "unique", "special", "famous"]):
                                confidence_boost += 0.05

                            # 根據特定特徵進一步微調,使用通用特徵描述而非特定地標
                            for feature, score in top_features:
                                if feature == "time_display" and "clock" in landmark_id:
                                    confidence_boost += 0.03
                                elif feature == "segmented_exterior" and "segmented" in landmark_id:
                                    confidence_boost += 0.03
                                elif feature == "slanted_design" and "leaning" in landmark_id:
                                    confidence_boost += 0.03

                            # 應用信心度調整
                            if confidence_boost > 0 and i < len(top_landmarks):
                                top_landmarks[i]["confidence"] += confidence_boost
                                print(f"Boosted {landmark['landmark_name']} confidence by {confidence_boost:.2f} based on architectural features ({primary_category})")

                        # 重新排序
                        top_landmarks.sort(key=lambda x: x["confidence"], reverse=True)
                        full_image_result["top_landmarks"] = top_landmarks
                        if top_landmarks:
                            full_image_result["landmark_id"] = top_landmarks[0]["landmark_id"]
                            full_image_result["landmark_name"] = top_landmarks[0]["landmark_name"]
                            full_image_result["confidence"] = top_landmarks[0]["confidence"]
                            full_image_result["location"] = top_landmarks[0].get("location", "Unknown Location")
                except Exception as e:
                    print(f"Error in architectural feature analysis: {e}")
                    import traceback
                    traceback.print_exc()

        if full_image_result and full_image_result.get("is_landmark", False):
            result["is_landmark_scene"] = True
            landmark_id = full_image_result.get("landmark_id", "unknown")

            # extract landmark info
            landmark_specific_info = self._extract_landmark_specific_info(landmark_id)

            landmark_info = {
                "landmark_id": landmark_id,
                "landmark_name": full_image_result.get("landmark_name", "Unknown Landmark"),
                "confidence": full_image_result.get("confidence", 0.0),
                "location": full_image_result.get("location", "Unknown Location"),
                "region_type": "full_image",
                "box": [0, 0, getattr(image, 'width', 0), getattr(image, 'height', 0)]
            }

            # 整合地標特定info,確保正確的名稱被使用
            landmark_info.update(landmark_specific_info)

            # 如果特定信息中有更準確的地標名稱,使用它
            if landmark_specific_info.get("landmark_name"):
                landmark_info["landmark_name"] = landmark_specific_info["landmark_name"]

            result["detected_landmarks"].append(landmark_info)

            # 確保地標特定活動被正確設置為主要結果
            if landmark_specific_info.get("has_specific_activities", False):
                result["primary_landmark_activities"] = landmark_specific_info.get("landmark_specific_activities", [])
                print(f"Set primary landmark activities: {len(result['primary_landmark_activities'])} activities for {landmark_info['landmark_name']}")

        # 如果提供了YOLO邊界框,分析這些區域
        if yolo_boxes and len(yolo_boxes) > 0:
            for box in yolo_boxes:
                try:
                    if hasattr(self, 'classify_image_region'):
                        box_result = self.classify_image_region(
                            image,
                            box,
                            threshold=base_threshold,
                            detection_type="auto"
                        )

                        # 如果檢測到地標
                        if box_result and box_result.get("is_landmark", False):
                            # 檢查是否與已檢測的地標重複
                            is_duplicate = False
                            for existing in result["detected_landmarks"]:
                                if existing.get("landmark_id") == box_result.get("landmark_id"):
                                    # 如果新的置信度更高,則更新
                                    if box_result.get("confidence", 0) > existing.get("confidence", 0):
                                        existing.update({
                                            "confidence": box_result.get("confidence", 0),
                                            "region_type": "yolo_box",
                                            "box": box
                                        })
                                    is_duplicate = True
                                    break

                            # 如果不是重複的,添加到列表
                            if not is_duplicate:
                                result["detected_landmarks"].append({
                                    "landmark_id": box_result.get("landmark_id", "unknown"),
                                    "landmark_name": box_result.get("landmark_name", "Unknown Landmark"),
                                    "confidence": box_result.get("confidence", 0.0),
                                    "location": box_result.get("location", "Unknown Location"),
                                    "region_type": "yolo_box",
                                    "box": box
                                })
                except Exception as e:
                    print(f"Error in analyzing YOLO box: {e}")
                    continue

        # 最後,執行額外的網格搜索以捕獲可能被遺漏的地標
        # 但只有在尚未發現地標或僅發現低置信度地標時
        should_do_grid_search = (
            len(result["detected_landmarks"]) == 0 or
            max([landmark.get("confidence", 0) for landmark in result["detected_landmarks"]], default=0) < 0.5
        )

        if should_do_grid_search and hasattr(self, 'classify_image_region'):
            try:
                # 創建5x5網格
                width, height = getattr(image, 'size', (getattr(image, 'width', 0), getattr(image, 'height', 0)))
                if not isinstance(width, (int, float)) or width <= 0:
                    width = getattr(image, 'width', 0)
                if not isinstance(height, (int, float)) or height <= 0:
                    height = getattr(image, 'height', 0)

                if width > 0 and height > 0:
                    grid_boxes = []
                    for i in range(5):
                        for j in range(5):
                            grid_boxes.append([
                                width * (j/5), height * (i/5),
                                width * ((j+1)/5), height * ((i+1)/5)
                            ])

                    # 分析每個網格區域
                    for box in grid_boxes:
                        try:
                            grid_result = self.classify_image_region(
                                image,
                                box,
                                threshold=base_threshold * 0.9,  # 稍微降低網格搜索閾值
                                detection_type="partial"
                            )

                            # 如果檢測到地標
                            if grid_result and grid_result.get("is_landmark", False):
                                # 檢查是否與已檢測的地標重複
                                is_duplicate = False
                                for existing in result["detected_landmarks"]:
                                    if existing.get("landmark_id") == grid_result.get("landmark_id"):
                                        is_duplicate = True
                                        break

                                # 如果不是重複的,添加到列表
                                if not is_duplicate:
                                    result["detected_landmarks"].append({
                                        "landmark_id": grid_result.get("landmark_id", "unknown"),
                                        "landmark_name": grid_result.get("landmark_name", "Unknown Landmark"),
                                        "confidence": grid_result.get("confidence", 0.0),
                                        "location": grid_result.get("location", "Unknown Location"),
                                        "region_type": "grid",
                                        "box": box
                                    })
                        except Exception as e:
                            print(f"Error in analyzing grid region: {e}")
                            continue
            except Exception as e:
                print(f"Error in grid search: {e}")
                import traceback
                traceback.print_exc()

        # 按置信度排序檢測結果
        result["detected_landmarks"].sort(key=lambda x: x.get("confidence", 0), reverse=True)

        # 更新整體場景類型判斷
        if len(result["detected_landmarks"]) > 0:
            result["is_landmark_scene"] = True
            result["primary_landmark"] = result["detected_landmarks"][0]

            # 添加 clip_analysis_on_full_image 結果,以便給 LLM 提供更多上下文
            if full_image_result and "clip_analysis" in full_image_result:
                result["clip_analysis_on_full_image"] = full_image_result["clip_analysis"]

        return result

    def _extract_landmark_specific_info(self, landmark_id: str) -> Dict[str, Any]:
        """
        提取特定地標的詳細信息,包括特色模板和活動建議

        Args:
            landmark_id: 地標ID

        Returns:
            Dict: 地標特定信息
        """
        if not landmark_id or landmark_id == "unknown":
            return {"has_specific_activities": False}

        specific_info = {"has_specific_activities": False}

        # 從 ALL_LANDMARKS 或 self.landmark_data 中提取基本信息
        landmark_data_source = None

        # 優先嘗試從類屬性獲取
        if hasattr(self, 'landmark_data') and self.landmark_data and landmark_id in self.landmark_data:
            landmark_data_source = self.landmark_data[landmark_id]
            print(f"Using landmark data from class attribute for {landmark_id}")
        else:
            try:
                if landmark_id in ALL_LANDMARKS:
                    landmark_data_source = ALL_LANDMARKS[landmark_id]
                    print(f"Using landmark data from ALL_LANDMARKS for {landmark_id}")
            except ImportError:
                print("Warning: Could not import ALL_LANDMARKS from landmark_data")
            except Exception as e:
                print(f"Error accessing ALL_LANDMARKS: {e}")

        # 處理地標基本數據
        if landmark_data_source:
            # 提取正確的地標名稱
            if "name" in landmark_data_source:
                specific_info["landmark_name"] = landmark_data_source["name"]

            # 提取所有可用的 prompts 作為特色模板
            if "prompts" in landmark_data_source:
                specific_info["feature_templates"] = landmark_data_source["prompts"][:5]
                specific_info["primary_template"] = landmark_data_source["prompts"][0]

            # 提取別名info
            if "aliases" in landmark_data_source:
                specific_info["aliases"] = landmark_data_source["aliases"]

            # 提取位置信息
            if "location" in landmark_data_source:
                specific_info["location"] = landmark_data_source["location"]

            # 提取其他相關信息
            for key in ["year_built", "architectural_style", "significance", "description"]:
                if key in landmark_data_source:
                    specific_info[key] = landmark_data_source[key]

        # 嘗試從 LANDMARK_ACTIVITIES 中提取活動建議
        try:
            if landmark_id in LANDMARK_ACTIVITIES:
                activities = LANDMARK_ACTIVITIES[landmark_id]
                specific_info["landmark_specific_activities"] = activities
                specific_info["has_specific_activities"] = True
                print(f"Found {len(activities)} specific activities for landmark {landmark_id}")
            else:
                print(f"No specific activities found for landmark {landmark_id} in LANDMARK_ACTIVITIES")
                specific_info["has_specific_activities"] = False
        except ImportError:
            print("Warning: Could not import LANDMARK_ACTIVITIES from landmark_activities")
            specific_info["has_specific_activities"] = False
        except Exception as e:
            print(f"Error loading landmark activities for {landmark_id}: {e}")
            specific_info["has_specific_activities"] = False

        return specific_info

    def _analyze_viewpoint(self, image: Union[Image.Image, np.ndarray]) -> Dict[str, float]:
        """
        Analyzes the image viewpoint to adjust detection parameters.

        Args:
            image: Input image

        Returns:
            Dict: Viewpoint analysis results
        """
        viewpoint_prompts = {
            "aerial_view": "an aerial view from above looking down",
            "street_level": "a street level view looking up at a tall structure",
            "eye_level": "an eye-level horizontal view of a landmark",
            "distant": "a distant view of a landmark on the horizon",
            "close_up": "a close-up detailed view of architectural features",
            "interior": "an interior view inside a structure"
        }

        # Calculate similarity scores
        viewpoint_scores = self.calculate_similarity_scores(image, viewpoint_prompts)

        # Find dominant viewpoint
        dominant_viewpoint = max(viewpoint_scores.items(), key=lambda x: x[1])

        return {
            "viewpoint_scores": viewpoint_scores,
            "dominant_viewpoint": dominant_viewpoint[0],
            "confidence": dominant_viewpoint[1]
        }

    def calculate_similarity_scores(self, image: Union[Image.Image, np.ndarray],
                                prompts: Dict[str, str]) -> Dict[str, float]:
        """
        計算圖像與一組特定提示之間的相似度分數

        Args:
            image: 輸入圖像
            prompts: 提示詞字典 {名稱: 提示文本}

        Returns:
            Dict[str, float]: 每個提示的相似度分數
        """
        # 確保圖像是PIL格式
        if not isinstance(image, Image.Image):
            if isinstance(image, np.ndarray):
                image = Image.fromarray(image)
            else:
                raise ValueError("Unsupported image format. Expected PIL Image or numpy array.")

        # 預處理圖像
        image_input = self.preprocess(image).unsqueeze(0).to(self.device)

        # 獲取圖像特徵
        with torch.no_grad():
            image_features = self.model.encode_image(image_input)
            image_features = image_features / image_features.norm(dim=-1, keepdim=True)

        # 計算與每個提示的相似度
        scores = {}
        prompt_texts = list(prompts.values())
        prompt_tokens = clip.tokenize(prompt_texts).to(self.device)

        with torch.no_grad():
            prompt_features = self.model.encode_text(prompt_tokens)
            prompt_features = prompt_features / prompt_features.norm(dim=-1, keepdim=True)

            # calculate similarity
            similarity = (100.0 * image_features @ prompt_features.T).softmax(dim=-1)
            similarity = similarity.cpu().numpy()[0] if self.device == "cuda" else similarity.numpy()[0]

        # 填充結果字典
        for i, (name, _) in enumerate(prompts.items()):
            scores[name] = float(similarity[i])

        return scores