Spaces:
Running
on
Zero
Running
on
Zero
File size: 112,451 Bytes
3172319 ca35826 3172319 4d1f920 e83cc4c 3172319 4d1f920 3172319 4d1f920 3172319 4d1f920 3172319 4d1f920 3172319 4d1f920 3172319 4d1f920 3172319 e83cc4c 4d1f920 e83cc4c 4d1f920 e83cc4c 3172319 4d1f920 3172319 4d1f920 3172319 4d1f920 3172319 4d1f920 3172319 4d1f920 3172319 4d1f920 3172319 4d1f920 3172319 4d1f920 3172319 4d1f920 3172319 4d1f920 e83cc4c 4d1f920 e83cc4c 4d1f920 e83cc4c 4d1f920 e83cc4c 4d1f920 e83cc4c 4d1f920 e83cc4c 3172319 4d1f920 3172319 4d1f920 3172319 4d1f920 3172319 4d1f920 3172319 4d1f920 3172319 4d1f920 3172319 4d1f920 3172319 4d1f920 3172319 4d1f920 3172319 4d1f920 3172319 4d1f920 3172319 4d1f920 3172319 4d1f920 3172319 4d1f920 3172319 4d1f920 3172319 4d1f920 3172319 4d1f920 3172319 4d1f920 3172319 4d1f920 3172319 4d1f920 e83cc4c 4d1f920 e83cc4c 4d1f920 e83cc4c 4d1f920 e83cc4c 4d1f920 e83cc4c 4d1f920 e83cc4c 4d1f920 3172319 4d1f920 3172319 4d1f920 3172319 4d1f920 3172319 4d1f920 3172319 4d1f920 3172319 4d1f920 3172319 4d1f920 3172319 4d1f920 3172319 4d1f920 3172319 4d1f920 3172319 4d1f920 3172319 4d1f920 3172319 4d1f920 3172319 4d1f920 3172319 4d1f920 3172319 4d1f920 3172319 4d1f920 3172319 4d1f920 3172319 4d1f920 3172319 4d1f920 3172319 4d1f920 3172319 4d1f920 3172319 4d1f920 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 |
import os
import numpy as np
from typing import Dict, List, Tuple, Any, Optional
from PIL import Image
from spatial_analyzer import SpatialAnalyzer
from scene_description import SceneDescriptor
from enhance_scene_describer import EnhancedSceneDescriber
from clip_analyzer import CLIPAnalyzer
from landmark_activities import LANDMARK_ACTIVITIES
from clip_zero_shot_classifier import CLIPZeroShotClassifier
from llm_enhancer import LLMEnhancer
from scene_type import SCENE_TYPES
from object_categories import OBJECT_CATEGORIES
from landmark_data import ALL_LANDMARKS
class SceneAnalyzer:
"""
Core class for scene analysis and understanding based on object detection results.
Analyzes detected objects, their relationships, and infers the scene type.
"""
EVERYDAY_SCENE_TYPE_KEYS = [
"general_indoor_space", "generic_street_view",
"desk_area_workspace", "outdoor_gathering_spot",
"kitchen_counter_or_utility_area"
]
def __init__(self, class_names: Dict[int, str] = None, use_llm: bool = True, use_clip: bool = True, enable_landmark=True, llm_model_path: str = None):
"""
Initialize the scene analyzer with optional class name mappings.
Args:
class_names: Dictionary mapping class IDs to class names (optional)
"""
try:
self.class_names = class_names
self.use_clip = use_clip
self.use_landmark_detection = enable_landmark
self.enable_landmark = enable_landmark
# 初始化基本屬性
self.LANDMARK_ACTIVITIES = {}
self.SCENE_TYPES = {}
self.OBJECT_CATEGORIES = {}
# 嘗試加載資料
try:
self.LANDMARK_ACTIVITIES = LANDMARK_ACTIVITIES
print("Loaded LANDMARK_ACTIVITIES successfully")
except Exception as e:
print(f"Warning: Failed to load LANDMARK_ACTIVITIES: {e}")
try:
self.SCENE_TYPES = SCENE_TYPES
print("Loaded SCENE_TYPES successfully")
except Exception as e:
print(f"Warning: Failed to load SCENE_TYPES: {e}")
try:
self.OBJECT_CATEGORIES = OBJECT_CATEGORIES
print("Loaded OBJECT_CATEGORIES successfully")
except Exception as e:
print(f"Warning: Failed to load OBJECT_CATEGORIES: {e}")
# 初始化其他組件
self.spatial_analyzer = None
self.descriptor = None
self.scene_describer = None
try:
self.spatial_analyzer = SpatialAnalyzer(class_names=class_names, object_categories=self.OBJECT_CATEGORIES)
print("Initialized SpatialAnalyzer successfully")
except Exception as e:
print(f"Error initializing SpatialAnalyzer: {e}")
import traceback
traceback.print_exc()
try:
self.descriptor = SceneDescriptor(scene_types=self.SCENE_TYPES, object_categories=self.OBJECT_CATEGORIES)
print("Initialized SceneDescriptor successfully")
except Exception as e:
print(f"Error initializing SceneDescriptor: {e}")
import traceback
traceback.print_exc()
try:
if self.spatial_analyzer:
self.scene_describer = EnhancedSceneDescriber(scene_types=self.SCENE_TYPES, spatial_analyzer_instance=self.spatial_analyzer)
print("Initialized EnhancedSceneDescriber successfully")
else:
print("Warning: Cannot initialize EnhancedSceneDescriber without SpatialAnalyzer")
except Exception as e:
print(f"Error initializing EnhancedSceneDescriber: {e}")
import traceback
traceback.print_exc()
# 初始化 CLIP 分析器
if self.use_clip:
try:
self.clip_analyzer = CLIPAnalyzer()
try:
# 嘗試使用已加載的CLIP模型實例
if hasattr(self.clip_analyzer, 'get_clip_instance'):
model, preprocess, device = self.clip_analyzer.get_clip_instance()
self.landmark_classifier = CLIPZeroShotClassifier(device=device)
print("Initialized landmark classifier with shared CLIP model")
else:
self.landmark_classifier = CLIPZeroShotClassifier()
# 配置地標檢測器
self.landmark_classifier.set_batch_size(8) # 設置合適的批處理大小
self.landmark_classifier.adjust_confidence_threshold("full_image", 0.8) # 整張圖像的閾值要求
self.landmark_classifier.adjust_confidence_threshold("distant", 0.65) # 遠景地標的閾值要求
self.use_landmark_detection = True
print("Landmark detection enabled with optimized settings")
except (ImportError, Exception) as e:
print(f"Warning: Could not initialize landmark classifier: {e}")
self.use_landmark_detection = False
except Exception as e:
print(f"Warning: Could not initialize CLIP analyzer: {e}")
print("Scene analysis will proceed without CLIP. Install CLIP with 'pip install clip' for enhanced scene understanding.")
self.use_clip = False
# 初始化LLM Model
self.use_llm = use_llm
if use_llm:
try:
# from llm_enhancer import LLMEnhancer
self.llm_enhancer = LLMEnhancer(model_path=llm_model_path)
print(f"LLM enhancer initialized successfully.")
except Exception as e:
print(f"Warning: Could not initialize LLM enhancer: {e}")
print("Scene analysis will proceed without LLM. Make sure required packages are installed.")
self.use_llm = False
except Exception as e:
print(f"Critical error during SceneAnalyzer initialization: {e}")
import traceback
traceback.print_exc()
raise
def generate_scene_description(self,
scene_type: str,
detected_objects: List[Dict],
confidence: float,
lighting_info: Optional[Dict] = None,
functional_zones: Optional[Dict] = None,
enable_landmark: bool = True,
scene_scores: Optional[Dict] = None,
spatial_analysis: Optional[Dict] = None,
image_dimensions: Optional[Tuple[int, int]] = None
):
"""
生成場景描述,並將所有必要的上下文傳遞給底層的描述器。
Args:
scene_type: 識別的場景類型
detected_objects: 檢測到的物體列表
confidence: 場景分類置信度
lighting_info: 照明條件信息(可選)
functional_zones: 功能區域信息(可選)
enable_landmark: 是否啟用地標描述(可選)
scene_scores: 場景分數(可選)
spatial_analysis: 空間分析結果(可選)
image_dimensions: 圖像尺寸 (寬, 高)(可選)
Returns:
str: 生成的場景描述
"""
# 轉換 functional_zones 從 Dict 到 List[str],並過濾技術術語
functional_zones_list = []
if functional_zones and isinstance(functional_zones, dict):
# 過濾掉技術術語,只保留有意義的描述
filtered_zones = {k: v for k, v in functional_zones.items()
if not k.endswith('_zone') or k in ['dining_zone', 'seating_zone', 'work_zone']}
functional_zones_list = [v.get('description', k) for k, v in filtered_zones.items()
if isinstance(v, dict) and v.get('description')]
elif functional_zones and isinstance(functional_zones, list):
# 過濾列表中的技術術語
functional_zones_list = [zone for zone in functional_zones
if not zone.endswith('_zone') or 'area' in zone]
# 生成詳細的物體統計信息
object_statistics = {}
for obj in detected_objects:
class_name = obj.get("class_name", "unknown")
if class_name not in object_statistics:
object_statistics[class_name] = {
"count": 0,
"avg_confidence": 0.0,
"max_confidence": 0.0,
"instances": []
}
stats = object_statistics[class_name]
stats["count"] += 1
stats["instances"].append(obj)
stats["max_confidence"] = max(stats["max_confidence"], obj.get("confidence", 0.0))
# 計算平均信心度
for class_name, stats in object_statistics.items():
if stats["count"] > 0:
total_conf = sum(inst.get("confidence", 0.0) for inst in stats["instances"])
stats["avg_confidence"] = total_conf / stats["count"]
return self.scene_describer.generate_description(
scene_type=scene_type,
detected_objects=detected_objects,
confidence=confidence,
lighting_info=lighting_info,
functional_zones=functional_zones_list,
enable_landmark=enable_landmark,
scene_scores=scene_scores,
spatial_analysis=spatial_analysis,
image_dimensions=image_dimensions,
object_statistics=object_statistics
)
def _define_image_regions(self):
"""Define regions of the image for spatial analysis (3x3 grid)"""
self.regions = {
"top_left": (0, 0, 1/3, 1/3),
"top_center": (1/3, 0, 2/3, 1/3),
"top_right": (2/3, 0, 1, 1/3),
"middle_left": (0, 1/3, 1/3, 2/3),
"middle_center": (1/3, 1/3, 2/3, 2/3),
"middle_right": (2/3, 1/3, 1, 2/3),
"bottom_left": (0, 2/3, 1/3, 1),
"bottom_center": (1/3, 2/3, 2/3, 1),
"bottom_right": (2/3, 2/3, 1, 1)
}
def _get_alternative_scene_type(self, landmark_scene_type, detected_objects, scene_scores):
"""
為地標場景類型選擇適合的替代類型
Args:
landmark_scene_type: 原始地標場景類型
detected_objects: 檢測到的物體列表
scene_scores: 所有場景類型的分數
Returns:
str: 適合的替代場景類型
"""
# 1. 嘗試從現有場景分數中找出第二高的非地標場景
landmark_types = {"tourist_landmark", "natural_landmark", "historical_monument"}
alternative_scores = {k: v for k, v in scene_scores.items() if k not in landmark_types and v > 0.2}
if alternative_scores:
# 返回分數最高的非地標場景類型
return max(alternative_scores.items(), key=lambda x: x[1])[0]
# 2. 基於物體組合推斷場景類型
object_counts = {}
for obj in detected_objects:
class_name = obj.get("class_name", "")
if class_name not in object_counts:
object_counts[class_name] = 0
object_counts[class_name] += 1
# 根據物體組合決定場景類型
if "car" in object_counts or "truck" in object_counts or "bus" in object_counts:
# 有車輛,可能是街道或交叉路口
if "traffic light" in object_counts or "stop sign" in object_counts:
return "intersection"
else:
return "city_street"
if "building" in object_counts and object_counts.get("person", 0) > 0:
# 有建築物和人,可能是商業區
return "commercial_district"
if object_counts.get("person", 0) > 3:
# 多個行人,可能是行人區
return "pedestrian_area"
if "bench" in object_counts or "potted plant" in object_counts:
# 有長椅或盆栽,可能是公園區域
return "park_area"
# 3. 根據原始地標場景類型選擇合適的替代場景
if landmark_scene_type == "natural_landmark":
return "outdoor_natural_area"
elif landmark_scene_type == "historical_monument":
return "urban_architecture"
# 默認回退到城市街道
return "city_street"
def analyze(self, detection_result: Any, lighting_info: Optional[Dict] = None, class_confidence_threshold: float = 0.25, scene_confidence_threshold: float = 0.6, enable_landmark=True, places365_info: Optional[Dict] = None) -> Dict:
"""
Analyze detection results to determine scene type and provide understanding.
Args:
detection_result: Detection result from YOLOv8 or similar.
lighting_info: Optional lighting condition analysis results.
class_confidence_threshold: Minimum confidence to consider an object.
scene_confidence_threshold: Minimum confidence to determine a scene.
enable_landmark: Whether to enable landmark detection and recognition for this run.
Returns:
Dictionary with scene analysis results.
"""
current_run_enable_landmark = enable_landmark
print(f"DIAGNOSTIC (SceneAnalyzer.analyze): Called with current_run_enable_landmark={current_run_enable_landmark}")
print(f"DEBUG: SceneAnalyzer received lighting_info type: {type(lighting_info)}")
print(f"DEBUG: SceneAnalyzer lighting_info source: {lighting_info.get('source', 'unknown') if isinstance(lighting_info, dict) else 'not_dict'}")
# Log Places365 information if available
if places365_info:
print(f"DIAGNOSTIC: Places365 info received - scene: {places365_info.get('scene_label', 'unknown')}, "
f"mapped: {places365_info.get('mapped_scene_type', 'unknown')}, "
f"confidence: {places365_info.get('confidence', 0.0):.3f}")
# Sync enable_landmark status with child components for this analysis run
# Assuming these components exist and have an 'enable_landmark' attribute
for component_name in ['scene_describer', 'clip_analyzer', 'landmark_classifier']:
if hasattr(self, component_name):
component = getattr(self, component_name)
if component and hasattr(component, 'enable_landmark'):
component.enable_landmark = current_run_enable_landmark
self.enable_landmark = current_run_enable_landmark # Instance's general state for this run
if hasattr(self, 'use_landmark_detection'):
self.use_landmark_detection = current_run_enable_landmark
original_image_pil = None
image_dims_val = None # Will be (width, height)
if detection_result is not None and hasattr(detection_result, 'orig_img') and detection_result.orig_img is not None:
if isinstance(detection_result.orig_img, np.ndarray):
try:
img_array = detection_result.orig_img
if img_array.ndim == 3 and img_array.shape[2] == 4: # RGBA
img_array = img_array[:, :, :3] # Convert to RGB
if img_array.ndim == 2 : # Grayscale
original_image_pil = Image.fromarray(img_array).convert("RGB")
else: # Assuming RGB or BGR (PIL handles BGR->RGB on fromarray if mode not specified, but explicit is better if source is cv2 BGR)
original_image_pil = Image.fromarray(img_array)
if original_image_pil.mode == 'BGR': # Explicitly convert BGR from OpenCV to RGB for PIL
original_image_pil = original_image_pil.convert('RGB')
image_dims_val = (original_image_pil.width, original_image_pil.height)
except Exception as e:
print(f"Warning: Error converting NumPy orig_img to PIL: {e}")
elif hasattr(detection_result.orig_img, 'size') and callable(getattr(detection_result.orig_img, 'convert', None)):
original_image_pil = detection_result.orig_img.copy().convert("RGB") # Ensure RGB
image_dims_val = original_image_pil.size
else:
print(f"Warning: detection_result.orig_img (type: {type(detection_result.orig_img)}) is not a recognized NumPy array or PIL Image.")
else:
print("Warning: detection_result.orig_img not available. Image-based analysis will be limited.")
# Handling cases with no YOLO detections (or no boxes attribute)
no_yolo_detections = (detection_result is None or
not hasattr(detection_result, 'boxes') or
not hasattr(detection_result.boxes, 'xyxy') or
len(detection_result.boxes.xyxy) == 0)
if no_yolo_detections:
tried_landmark_detection = False
landmark_detection_result = None
if original_image_pil and self.use_clip and current_run_enable_landmark:
if not hasattr(self, 'landmark_classifier') and hasattr(self, 'clip_analyzer'):
try:
if hasattr(self.clip_analyzer, 'get_clip_instance'):
model, preprocess, device = self.clip_analyzer.get_clip_instance()
self.landmark_classifier = CLIPZeroShotClassifier(device=device)
print("Initialized landmark classifier with shared CLIP model")
else:
self.landmark_classifier = CLIPZeroShotClassifier()
print("Created landmark classifier on demand for no YOLO detection path")
except Exception as e:
print(f"Warning: Could not initialize landmark classifier: {e}")
# 地標搜索
if hasattr(self, 'landmark_classifier'):
try:
tried_landmark_detection = True
print("Attempting landmark detection with no YOLO boxes")
landmark_results_no_yolo = self.landmark_classifier.intelligent_landmark_search(
original_image_pil, yolo_boxes=None, base_threshold=0.2 # 略微降低閾值,提高靈敏度
)
# 確保在無地標場景時返回有效結果
if landmark_results_no_yolo is None:
landmark_results_no_yolo = {"is_landmark_scene": False, "detected_landmarks": []}
if landmark_results_no_yolo and landmark_results_no_yolo.get("is_landmark_scene", False):
primary_landmark_no_yolo = landmark_results_no_yolo.get("primary_landmark")
# 放寬閾值條件,以便捕獲更多潛在地標
if primary_landmark_no_yolo and primary_landmark_no_yolo.get("confidence", 0) > 0.25: # 降低閾值
landmark_detection_result = True
detected_objects_from_landmarks_list = []
w_img_no_yolo, h_img_no_yolo = image_dims_val if image_dims_val else (1,1)
for lm_info_item in landmark_results_no_yolo.get("detected_landmarks", []):
if lm_info_item.get("confidence", 0) > 0.25: # 降低閾值與上面保持一致
# 安全獲取 box 值,避免索引錯誤
box = lm_info_item.get("box", [0, 0, w_img_no_yolo, h_img_no_yolo])
# 確保 box 包含至少 4 個元素
if len(box) < 4:
box = [0, 0, w_img_no_yolo, h_img_no_yolo]
# 計算中心點和標準化坐標
center_x, center_y = (box[0] + box[2]) / 2, (box[1] + box[3]) / 2
norm_cx = center_x / w_img_no_yolo if w_img_no_yolo > 0 else 0.5
norm_cy = center_y / h_img_no_yolo if h_img_no_yolo > 0 else 0.5
# 決定地標類型
landmark_type = "architectural" # 預設類型
landmark_id = lm_info_item.get("landmark_id", "")
if hasattr(self.landmark_classifier, '_determine_landmark_type') and landmark_id:
try:
landmark_type = self.landmark_classifier._determine_landmark_type(landmark_id)
except Exception as e:
print(f"Error determining landmark type: {e}")
else:
# 使用簡單的基於 ID 的啟發式方法推斷類型
landmark_id_lower = landmark_id.lower() if isinstance(landmark_id, str) else ""
if "natural" in landmark_id_lower or any(term in landmark_id_lower for term in ["mountain", "waterfall", "canyon", "lake"]):
landmark_type = "natural"
elif "monument" in landmark_id_lower or "memorial" in landmark_id_lower or "historical" in landmark_id_lower:
landmark_type = "monument"
# 決定區域位置
region = "center" # 預設值
if hasattr(self, 'spatial_analyzer') and hasattr(self.spatial_analyzer, '_determine_region'):
try:
region = self.spatial_analyzer._determine_region(norm_cx, norm_cy)
except Exception as e:
print(f"Error determining region: {e}")
# 創建地標物體
landmark_obj = {
"class_id": lm_info_item.get("landmark_id", f"LM_{lm_info_item.get('landmark_name','unk')}")[:15],
"class_name": lm_info_item.get("landmark_name", "Unknown Landmark"),
"confidence": lm_info_item.get("confidence", 0.0),
"box": box,
"center": (center_x, center_y),
"normalized_center": (norm_cx, norm_cy),
"size": (box[2] - box[0], box[3] - box[1]),
"normalized_size": (
(box[2] - box[0])/(w_img_no_yolo if w_img_no_yolo>0 else 1),
(box[3] - box[1])/(h_img_no_yolo if h_img_no_yolo>0 else 1)
),
"area": (box[2] - box[0]) * (box[3] - box[1]),
"normalized_area": (
(box[2] - box[0]) * (box[3] - box[1])
) / ((w_img_no_yolo*h_img_no_yolo) if w_img_no_yolo*h_img_no_yolo >0 else 1),
"is_landmark": True,
"landmark_id": landmark_id,
"location": lm_info_item.get("location", "Unknown Location"),
"region": region,
"year_built": lm_info_item.get("year_built", ""),
"architectural_style": lm_info_item.get("architectural_style", ""),
"significance": lm_info_item.get("significance", ""),
"landmark_type": landmark_type
}
detected_objects_from_landmarks_list.append(landmark_obj)
if detected_objects_from_landmarks_list:
# 設定場景類型
best_scene_val_no_yolo = "tourist_landmark" # 預設
if primary_landmark_no_yolo:
try:
lm_type_no_yolo = primary_landmark_no_yolo.get("landmark_type", "architectural")
if lm_type_no_yolo and "natural" in lm_type_no_yolo.lower():
best_scene_val_no_yolo = "natural_landmark"
elif lm_type_no_yolo and ("historical" in lm_type_no_yolo.lower() or "monument" in lm_type_no_yolo.lower()):
best_scene_val_no_yolo = "historical_monument"
except Exception as e:
print(f"Error determining scene type from landmark type: {e}")
# 確保場景類型有效
if not hasattr(self, 'SCENE_TYPES') or best_scene_val_no_yolo not in self.SCENE_TYPES:
best_scene_val_no_yolo = "tourist_landmark" # 預設場景類型
# 設定置信度
scene_confidence_no_yolo = primary_landmark_no_yolo.get("confidence", 0.0) if primary_landmark_no_yolo else 0.0
# 分析空間區域
region_analysis_for_lm_desc = {}
if hasattr(self, 'spatial_analyzer') and hasattr(self.spatial_analyzer, '_analyze_regions'):
try:
region_analysis_for_lm_desc = self.spatial_analyzer._analyze_regions(detected_objects_from_landmarks_list)
except Exception as e:
print(f"Error analyzing regions: {e}")
# 獲取功能區
f_zones_no_yolo = {}
if hasattr(self, 'spatial_analyzer') and hasattr(self.spatial_analyzer, '_identify_landmark_zones'):
try:
f_zones_no_yolo = self.spatial_analyzer._identify_landmark_zones(detected_objects_from_landmarks_list)
except Exception as e:
print(f"Error identifying landmark zones: {e}")
# 生成場景描述
scene_desc_no_yolo = f"A {best_scene_val_no_yolo} scene." # 預設描述
if hasattr(self, 'scene_describer') and hasattr(self.scene_describer, 'generate_description'):
try:
scene_desc_no_yolo = self.scene_describer.generate_description(
scene_type=best_scene_val_no_yolo,
detected_objects=detected_objects_from_landmarks_list,
confidence=scene_confidence_no_yolo,
lighting_info=lighting_info,
functional_zones=list(f_zones_no_yolo.keys()) if f_zones_no_yolo else [],
enable_landmark=True,
scene_scores={best_scene_val_no_yolo: scene_confidence_no_yolo},
spatial_analysis=region_analysis_for_lm_desc,
image_dimensions=image_dims_val
)
except Exception as e:
print(f"Error generating scene description: {e}")
# 使用 LLM 增強描述
enhanced_desc_no_yolo = scene_desc_no_yolo
if self.use_llm and hasattr(self, 'llm_enhancer') and hasattr(self.llm_enhancer, 'enhance_description'):
try:
# 準備用於 LLM 增強器的數據
prominent_objects_detail = ""
if hasattr(self, 'scene_describer') and hasattr(self.scene_describer, '_format_object_list_for_description'):
try:
prominent_objects_detail = self.scene_describer._format_object_list_for_description(
detected_objects_from_landmarks_list[:min(1, len(detected_objects_from_landmarks_list))]
)
except Exception as e:
print(f"Error formatting object list: {e}")
scene_data_llm_no_yolo = {
"original_description": scene_desc_no_yolo,
"scene_type": best_scene_val_no_yolo,
"scene_name": self.SCENE_TYPES.get(best_scene_val_no_yolo, {}).get("name", "Landmark")
if hasattr(self, 'SCENE_TYPES') else "Landmark",
"detected_objects": detected_objects_from_landmarks_list,
"object_list": "landmark",
"confidence": scene_confidence_no_yolo,
"lighting_info": lighting_info,
"functional_zones": f_zones_no_yolo,
"clip_analysis": landmark_results_no_yolo.get("clip_analysis_on_full_image", {}),
"enable_landmark": True,
"image_width": w_img_no_yolo,
"image_height": h_img_no_yolo,
"prominent_objects_detail": prominent_objects_detail
}
enhanced_desc_no_yolo = self.llm_enhancer.enhance_description(scene_data_llm_no_yolo)
except Exception as e:
print(f"Error enhancing description with LLM: {e}")
import traceback
traceback.print_exc()
# 計算可能的活動,優先使用地標特定活動
possible_activities = ["Sightseeing"]
# 檢查是否有主要地標活動從 CLIP 分析結果中獲取
primary_landmark_activities = landmark_results_no_yolo.get("primary_landmark_activities", [])
if primary_landmark_activities:
print(f"Using {len(primary_landmark_activities)} landmark-specific activities")
possible_activities = primary_landmark_activities
else:
# 從檢測到的地標中提取特定活動
landmark_specific_activities = []
for lm_info_item in landmark_results_no_yolo.get("detected_landmarks", []):
lm_id = lm_info_item.get("landmark_id")
if lm_id and hasattr(self, 'LANDMARK_ACTIVITIES') and lm_id in self.LANDMARK_ACTIVITIES:
landmark_specific_activities.extend(self.LANDMARK_ACTIVITIES[lm_id])
if landmark_specific_activities:
possible_activities = list(set(landmark_specific_activities)) # 去重
print(f"Extracted {len(possible_activities)} activities from landmark data")
else:
# 回退到通用活動推斷
if hasattr(self, 'descriptor') and hasattr(self.descriptor, '_infer_possible_activities'):
try:
possible_activities = self.descriptor._infer_possible_activities(
best_scene_val_no_yolo,
detected_objects_from_landmarks_list,
enable_landmark=True,
scene_scores={best_scene_val_no_yolo: scene_confidence_no_yolo}
)
except Exception as e:
print(f"Error inferring possible activities: {e}")
# 準備最終結果
return {
"scene_type": best_scene_val_no_yolo,
"scene_name": self.SCENE_TYPES.get(best_scene_val_no_yolo, {}).get("name", "Landmark")
if hasattr(self, 'SCENE_TYPES') else "Landmark",
"confidence": round(float(scene_confidence_no_yolo), 4),
"description": scene_desc_no_yolo,
"enhanced_description": enhanced_desc_no_yolo,
"objects_present": detected_objects_from_landmarks_list,
"object_count": len(detected_objects_from_landmarks_list),
"regions": region_analysis_for_lm_desc,
"possible_activities": possible_activities,
"functional_zones": f_zones_no_yolo,
"detected_landmarks": [lm for lm in detected_objects_from_landmarks_list if lm.get("is_landmark", False)],
"primary_landmark": primary_landmark_no_yolo,
"lighting_conditions": lighting_info or {"time_of_day": "unknown", "confidence": 0.0}
}
except Exception as e:
print(f"Error in landmark-only detection path (analyze method): {e}")
import traceback
traceback.print_exc()
# 如果地標檢測失敗或未嘗試,使用 CLIP 進行一般場景分析
if not landmark_detection_result and self.use_clip and original_image_pil:
try:
clip_analysis_val_no_yolo = None
if hasattr(self, 'clip_analyzer') and hasattr(self.clip_analyzer, 'analyze_image'):
try:
clip_analysis_val_no_yolo = self.clip_analyzer.analyze_image(
original_image_pil,
enable_landmark=current_run_enable_landmark
)
except Exception as e:
print(f"Error in CLIP analysis: {e}")
scene_type_llm_no_yolo = "llm_inferred_no_yolo"
confidence_llm_no_yolo = 0.0
if clip_analysis_val_no_yolo and isinstance(clip_analysis_val_no_yolo, dict):
top_scene = clip_analysis_val_no_yolo.get("top_scene")
if top_scene and isinstance(top_scene, tuple) and len(top_scene) >= 2:
confidence_llm_no_yolo = top_scene[1]
if isinstance(top_scene[0], str):
scene_type_llm_no_yolo = top_scene[0]
desc_llm_no_yolo = "Primary object detection did not yield results. This description is based on overall image context."
w_llm_no_yolo, h_llm_no_yolo = image_dims_val if image_dims_val else (1, 1)
enhanced_desc_llm_no_yolo = desc_llm_no_yolo
if self.use_llm and hasattr(self, 'llm_enhancer'):
try:
# 確保數據正確格式化
clip_analysis_safe = {}
if isinstance(clip_analysis_val_no_yolo, dict):
clip_analysis_safe = clip_analysis_val_no_yolo
scene_data_llm_no_yolo_enhance = {
"original_description": desc_llm_no_yolo,
"scene_type": scene_type_llm_no_yolo,
"scene_name": "Contextually Inferred (No Detections)",
"detected_objects": [],
"object_list": "general ambiance",
"confidence": confidence_llm_no_yolo,
"lighting_info": lighting_info or {"time_of_day": "unknown", "confidence": 0.0},
"clip_analysis": clip_analysis_safe,
"enable_landmark": current_run_enable_landmark,
"image_width": w_llm_no_yolo,
"image_height": h_llm_no_yolo,
"prominent_objects_detail": "the overall visual context"
}
if hasattr(self.llm_enhancer, 'enhance_description'):
try:
enhanced_desc_llm_no_yolo = self.llm_enhancer.enhance_description(scene_data_llm_no_yolo_enhance)
except Exception as e:
print(f"Error in enhance_description: {e}")
if (not enhanced_desc_llm_no_yolo or len(enhanced_desc_llm_no_yolo.strip()) < 20) and hasattr(self.llm_enhancer, 'handle_no_detection'):
try:
enhanced_desc_llm_no_yolo = self.llm_enhancer.handle_no_detection(clip_analysis_safe)
except Exception as e:
print(f"Error in handle_no_detection: {e}")
except Exception as e:
print(f"Error preparing data for LLM enhancement: {e}")
import traceback
traceback.print_exc()
# 安全類型轉換
try:
confidence_float = float(confidence_llm_no_yolo)
except (ValueError, TypeError):
confidence_float = 0.0
# 確保增強描述不為空
if not enhanced_desc_llm_no_yolo or not isinstance(enhanced_desc_llm_no_yolo, str):
enhanced_desc_llm_no_yolo = desc_llm_no_yolo
# 返回結果
return {
"scene_type": scene_type_llm_no_yolo,
"confidence": round(confidence_float, 4),
"description": desc_llm_no_yolo,
"enhanced_description": enhanced_desc_llm_no_yolo,
"objects_present": [],
"object_count": 0,
"regions": {},
"possible_activities": [],
"safety_concerns": [],
"lighting_conditions": lighting_info or {"time_of_day": "unknown", "confidence": 0.0}
}
except Exception as e:
print(f"Error in CLIP no-detection fallback (analyze method): {e}")
import traceback
traceback.print_exc()
# Check if Places365 provides useful scene information even without YOLO detections
fallback_scene_type = "unknown"
fallback_confidence = 0.0
fallback_description = "No objects were detected in the image, and contextual analysis could not be performed or failed."
if places365_info and places365_info.get('confidence', 0) > 0.3:
fallback_scene_type = places365_info.get('mapped_scene_type', 'unknown')
fallback_confidence = places365_info.get('confidence', 0.0)
fallback_description = f"Scene appears to be {places365_info.get('scene_label', 'an unidentified location')} based on overall visual context."
return {
"scene_type": fallback_scene_type,
"confidence": fallback_confidence,
"description": fallback_description,
"enhanced_description": "The image analysis system could not detect any recognizable objects or landmarks in this image.",
"objects_present": [],
"object_count": 0,
"regions": {},
"possible_activities": [],
"safety_concerns": [],
"lighting_conditions": lighting_info or {"time_of_day": "unknown", "confidence": 0.0}
}
if self.use_llm and self.use_clip and original_image_pil:
try:
clip_analysis_val_no_yolo = self.clip_analyzer.analyze_image(original_image_pil, enable_landmark=current_run_enable_landmark)
scene_type_llm_no_yolo = "llm_inferred_no_yolo"
confidence_llm_no_yolo = clip_analysis_val_no_yolo.get("top_scene", ("unknown", 0.0))[1] if isinstance(clip_analysis_val_no_yolo, dict) else 0.0
desc_llm_no_yolo = "Primary object detection did not yield results. This description is based on overall image context."
w_llm_no_yolo, h_llm_no_yolo = image_dims_val if image_dims_val else (1,1)
scene_data_llm_no_yolo_enhance = {
"original_description": desc_llm_no_yolo, "scene_type": scene_type_llm_no_yolo,
"scene_name": "Contextually Inferred (No Detections)", "detected_objects": [], "object_list": "general ambiance",
"confidence": confidence_llm_no_yolo, "lighting_info": lighting_info, "clip_analysis": clip_analysis_val_no_yolo,
"enable_landmark": current_run_enable_landmark, "image_width": w_llm_no_yolo, "image_height": h_llm_no_yolo,
"prominent_objects_detail": "the overall visual context"
}
enhanced_desc_llm_no_yolo = self.llm_enhancer.enhance_description(scene_data_llm_no_yolo_enhance) if hasattr(self, 'llm_enhancer') else desc_llm_no_yolo
if hasattr(self, 'llm_enhancer') and hasattr(self.llm_enhancer, 'handle_no_detection') and (not enhanced_desc_llm_no_yolo or len(enhanced_desc_llm_no_yolo.strip()) < 20):
enhanced_desc_llm_no_yolo = self.llm_enhancer.handle_no_detection(clip_analysis_val_no_yolo)
return {
"scene_type": scene_type_llm_no_yolo, "confidence": round(float(confidence_llm_no_yolo),4),
"description": desc_llm_no_yolo, "enhanced_description": enhanced_desc_llm_no_yolo,
"objects_present": [], "object_count": 0, "regions": {}, "possible_activities": [],
"safety_concerns": [], "lighting_conditions": lighting_info or {"time_of_day": "unknown", "confidence": 0.0}
}
except Exception as e:
print(f"Error in LLM/CLIP no-detection fallback (analyze method): {e}")
return {
"scene_type": "unknown", "confidence": 0.0,
"description": "No objects were detected in the image, and contextual analysis could not be performed or failed.",
"objects_present": [], "object_count": 0, "regions": {}, "possible_activities": [],
"safety_concerns": [], "lighting_conditions": lighting_info or {"time_of_day": "unknown", "confidence": 0.0}
}
# Main processing flow if YOLO detections are present
if self.class_names is None and hasattr(detection_result, 'names'):
self.class_names = detection_result.names
if hasattr(self.spatial_analyzer, 'class_names'):
self.spatial_analyzer.class_names = self.class_names
detected_objects_main = self.spatial_analyzer._extract_detected_objects(
detection_result,
confidence_threshold=class_confidence_threshold
)
if not detected_objects_main:
return {
"scene_type": "unknown", "confidence": 0.0,
"description": "No objects detected with sufficient confidence by the primary vision system.",
"objects_present": [], "object_count": 0, "regions": {}, "possible_activities": [],
"safety_concerns": [], "lighting_conditions": lighting_info or {"time_of_day": "unknown", "confidence": 0.0}
}
# Spatial analysis done once on YOLO objects
region_analysis_val = self.spatial_analyzer._analyze_regions(detected_objects_main)
final_functional_zones = {}
final_activities = []
final_landmark_info = {}
tentative_best_scene = "unknown"
tentative_scene_confidence = 0.0
# Landmark Processing and Integration
landmark_objects_identified_clip = []
landmark_specific_activities = [] # NEW
if self.use_clip and current_run_enable_landmark and hasattr(self, 'process_unknown_objects') and hasattr(self, 'landmark_classifier'):
detected_objects_main_after_lm, landmark_objects_identified_clip = self.process_unknown_objects(
detection_result,
detected_objects_main
)
detected_objects_main = detected_objects_main_after_lm # Update main list
if landmark_objects_identified_clip:
primary_landmark_clip = max(landmark_objects_identified_clip, key=lambda x: x.get("confidence", 0.0), default=None)
if primary_landmark_clip and primary_landmark_clip.get("confidence", 0.0) > 0.35:
lm_type_raw = "architectural" # Default
if hasattr(self.landmark_classifier, '_determine_landmark_type') and primary_landmark_clip.get("landmark_id"):
lm_type_raw = self.landmark_classifier._determine_landmark_type(primary_landmark_clip.get("landmark_id"))
else:
lm_type_raw = primary_landmark_clip.get("landmark_type", "architectural")
if lm_type_raw == "natural": tentative_best_scene = "natural_landmark"
elif lm_type_raw == "monument": tentative_best_scene = "historical_monument"
else: tentative_best_scene = "tourist_landmark"
tentative_scene_confidence = primary_landmark_clip.get("confidence", 0.0)
final_landmark_info = {
"detected_landmarks": landmark_objects_identified_clip,
"primary_landmark": primary_landmark_clip,
"detailed_landmarks": landmark_objects_identified_clip
}
# 專門儲存地標特定活動的列表
landmark_specific_activities = []
# 優先收集來自識別地標的特定活動
for lm_obj in landmark_objects_identified_clip:
lm_id = lm_obj.get("landmark_id")
if lm_id and lm_id in self.LANDMARK_ACTIVITIES:
landmark_specific_activities.extend(self.LANDMARK_ACTIVITIES[lm_id])
# 將特定地標活動加入最終活動列表
if landmark_specific_activities:
final_activities.extend(landmark_specific_activities)
print(f"Added {len(landmark_specific_activities)} landmark-specific activities for {', '.join([lm.get('landmark_name', 'unknown') for lm in landmark_objects_identified_clip if lm.get('is_landmark', False)])}")
if hasattr(self.spatial_analyzer, '_identify_landmark_zones'):
final_functional_zones.update(self.spatial_analyzer._identify_landmark_zones(landmark_objects_identified_clip))
if not current_run_enable_landmark:
detected_objects_main = [obj for obj in detected_objects_main if not obj.get("is_landmark", False)]
final_landmark_info = {}
# --- Compute YOLO-based scene scores ---
# MODIFIED: Pass region_analysis_val as spatial_analysis_results
yolo_scene_scores_val = self._compute_scene_scores(detected_objects_main,
spatial_analysis_results=region_analysis_val)
# --- CLIP Analysis for general scene scores ---
clip_scene_scores_val = {}
clip_analysis_results = None # To store the full dict from clip_analyzer
if self.use_clip and original_image_pil is not None:
try:
clip_analysis_results = self.clip_analyzer.analyze_image(
original_image_pil,
enable_landmark=current_run_enable_landmark,
exclude_categories=["landmark", "tourist", "monument", "tower", "attraction", "scenic", "historical", "famous"] if not current_run_enable_landmark else None
)
if isinstance(clip_analysis_results, dict): # Ensure it's a dict before get
clip_scene_scores_val = clip_analysis_results.get("scene_scores", {})
# Filter again if landmarks are disabled
if not current_run_enable_landmark:
clip_scene_scores_val = {k: v for k, v in clip_scene_scores_val.items() if not any(kw in k.lower() for kw in ["landmark", "monument", "tourist"])}
if "cultural_analysis" in clip_analysis_results: del clip_analysis_results["cultural_analysis"]
if "top_scene" in clip_analysis_results and any(term in clip_analysis_results.get("top_scene",["unknown",0.0])[0].lower() for term in ["landmark", "monument", "tourist"]):
non_lm_cs = sorted([item for item in clip_scene_scores_val.items() if item[1] > 0], key=lambda x:x[1], reverse=True)
clip_analysis_results["top_scene"] = non_lm_cs[0] if non_lm_cs else ("unknown", 0.0)
# (Keep your asian_commercial_street special handling here if needed)
if not lighting_info and "lighting_condition" in clip_analysis_results: # If main lighting_info is still None
lt, lc = clip_analysis_results.get("lighting_condition", ("unknown", 0.0))
lighting_info = {"time_of_day": lt, "confidence": lc, "source": "CLIP_fallback"}
except Exception as e:
print(f"Error in main CLIP analysis for YOLO path (analyze method): {e}")
# Calculate stats for _fuse_scene_scores (based on non-landmark YOLO objects)
yolo_only_objects_for_fuse_stats = [obj for obj in detected_objects_main if not obj.get("is_landmark")]
num_yolo_detections_for_fuse = len(yolo_only_objects_for_fuse_stats)
avg_yolo_confidence_for_fuse = sum(obj.get('confidence', 0.0) for obj in yolo_only_objects_for_fuse_stats) / num_yolo_detections_for_fuse if num_yolo_detections_for_fuse > 0 else 0.0
print(f"DEBUG: About to call _fuse_scene_scores with lighting_info: {lighting_info}")
print(f"DEBUG: Places365_info being passed to fuse: {places365_info}")
scene_scores_fused = self._fuse_scene_scores(
yolo_scene_scores_val, clip_scene_scores_val,
num_yolo_detections=num_yolo_detections_for_fuse,
avg_yolo_confidence=avg_yolo_confidence_for_fuse,
lighting_info=lighting_info,
places365_info=places365_info
)
# Respect tentative scene from strong landmark detection during fusion adjustment
if tentative_best_scene != "unknown" and "landmark" in tentative_best_scene.lower() and tentative_scene_confidence > 0.5:
scene_scores_fused[tentative_best_scene] = max(scene_scores_fused.get(tentative_best_scene, 0.0), tentative_scene_confidence * 0.95)
# Final determination of scene type
final_best_scene, final_scene_confidence = self._determine_scene_type(scene_scores_fused)
if not current_run_enable_landmark and final_best_scene in ["tourist_landmark", "natural_landmark", "historical_monument"]:
if hasattr(self, '_get_alternative_scene_type'):
alt_scene_type = self._get_alternative_scene_type(final_best_scene, detected_objects_main, scene_scores_fused)
final_best_scene = alt_scene_type
final_scene_confidence = scene_scores_fused.get(alt_scene_type, 0.6)
else:
final_best_scene = "generic_street_view"; final_scene_confidence = min(final_scene_confidence, 0.65)
# Generate final descriptive content (Activities, Safety, Zones)
# 如果有特定地標活動,限制通用活動的數量
generic_activities = []
if hasattr(self.descriptor, '_infer_possible_activities'):
generic_activities = self.descriptor._infer_possible_activities(
final_best_scene, detected_objects_main,
enable_landmark=current_run_enable_landmark, scene_scores=scene_scores_fused
)
# 優先處理策略:使用特定地標活動,不足時才從通用活動補充
if landmark_specific_activities:
# 如果有特定活動,優先保留,去除與特定活動重複的通用活動
unique_generic_activities = [act for act in generic_activities if act not in landmark_specific_activities]
# 如果特定活動少於3個,從通用活動中補充
if len(landmark_specific_activities) < 3:
# 補充通用活動但總數不超過7個
supplement_count = min(3 - len(landmark_specific_activities), len(unique_generic_activities))
if supplement_count > 0:
final_activities.extend(unique_generic_activities[:supplement_count])
else:
# 若無特定活動,則使用所有通用活動
final_activities.extend(generic_activities)
# 去重並排序,但確保特定地標活動保持在前面
final_activities_set = set(final_activities)
final_activities = []
# 先加入特定地標活動(按原順序)
for activity in landmark_specific_activities:
if activity in final_activities_set:
final_activities.append(activity)
final_activities_set.remove(activity)
# 再加入通用活動(按字母排序)
final_activities.extend(sorted(list(final_activities_set)))
final_safety_concerns = self.descriptor._identify_safety_concerns(detected_objects_main, final_best_scene) if hasattr(self.descriptor, '_identify_safety_concerns') else []
if hasattr(self.spatial_analyzer, '_identify_functional_zones'): # Update functional_zones
general_zones = self.spatial_analyzer._identify_functional_zones(detected_objects_main, final_best_scene)
for gz_key, gz_val in general_zones.items():
if gz_key not in final_functional_zones: final_functional_zones[gz_key] = gz_val
# Filter again if landmarks disabled for this run
if not current_run_enable_landmark:
final_functional_zones = {k: v for k, v in final_functional_zones.items() if not any(kw in k.lower() for kw in ["landmark", "monument", "viewing", "tourist"])}
current_activities_temp = [act for act in final_activities if not any(kw in act.lower() for kw in ["sightsee", "photograph", "tour", "histor", "landmark", "monument", "cultur"])]
final_activities = current_activities_temp
if not final_activities and hasattr(self.descriptor, '_infer_possible_activities'):
final_activities = self.descriptor._infer_possible_activities("generic_street_view", detected_objects_main, enable_landmark=False)
# 創建淨化的光線資訊,避免不合理的時間描述
lighting_info_clean = None
if lighting_info:
lighting_info_clean = {
"is_indoor": lighting_info.get("is_indoor"),
"confidence": lighting_info.get("confidence", 0.0),
"time_of_day": lighting_info.get("time_of_day", "unknown") # 加入這行
}
# 如果 Places365 提供高信心度判斷,就用它的結果
if places365_info and places365_info.get('confidence', 0) >= 0.8:
lighting_info_clean["is_indoor"] = places365_info.get('is_indoor')
lighting_info_clean["confidence"] = places365_info.get('confidence')
base_scene_description = self.generate_scene_description(
scene_type=final_best_scene,
detected_objects=detected_objects_main,
confidence=final_scene_confidence,
lighting_info=lighting_info_clean,
functional_zones=final_functional_zones,
enable_landmark=current_run_enable_landmark,
scene_scores=scene_scores_fused,
spatial_analysis=region_analysis_val,
image_dimensions=image_dims_val
)
if not current_run_enable_landmark and hasattr(self, '_remove_landmark_references'):
base_scene_description = self._remove_landmark_references(base_scene_description)
# --- LLM Enhancement ---
enhanced_final_description = base_scene_description
llm_verification_output = None
if self.use_llm and hasattr(self, 'llm_enhancer'):
try:
obj_list_for_llm = ", ".join(sorted(list(set(
obj["class_name"] for obj in detected_objects_main
if obj.get("confidence", 0) > 0.4 and not obj.get("is_landmark")
))))
if not obj_list_for_llm and current_run_enable_landmark and final_landmark_info.get("primary_landmark"):
obj_list_for_llm = final_landmark_info["primary_landmark"].get("class_name", "a prominent feature")
elif not obj_list_for_llm: obj_list_for_llm = "various visual elements"
# 生成物體統計信息
object_statistics = {}
for obj in detected_objects_main:
class_name = obj.get("class_name", "unknown")
if class_name not in object_statistics:
object_statistics[class_name] = {
"count": 0,
"avg_confidence": 0.0,
"max_confidence": 0.0,
"instances": []
}
stats = object_statistics[class_name]
stats["count"] += 1
stats["instances"].append(obj)
stats["max_confidence"] = max(stats["max_confidence"], obj.get("confidence", 0.0))
# 計算平均信心度
for class_name, stats in object_statistics.items():
if stats["count"] > 0:
total_conf = sum(inst.get("confidence", 0.0) for inst in stats["instances"])
stats["avg_confidence"] = total_conf / stats["count"]
llm_scene_data = {
"original_description": base_scene_description, "scene_type": final_best_scene,
"scene_name": self.SCENE_TYPES.get(final_best_scene, {}).get("name", "Unknown Scene"),
"detected_objects": detected_objects_main, "object_list": obj_list_for_llm,
"object_statistics": object_statistics, # 新增統計信息
"confidence": final_scene_confidence, "lighting_info": lighting_info,
"functional_zones": final_functional_zones, "activities": final_activities,
"safety_concerns": final_safety_concerns,
"clip_analysis": clip_analysis_results if isinstance(clip_analysis_results, dict) else None,
"enable_landmark": current_run_enable_landmark,
"image_width": image_dims_val[0] if image_dims_val else None,
"image_height": image_dims_val[1] if image_dims_val else None,
"prominent_objects_detail": self.scene_describer._format_object_list_for_description(
self.scene_describer._get_prominent_objects(detected_objects_main, min_prominence_score=0.1, max_categories_to_return=3, max_total_objects=7)
) if hasattr(self.scene_describer, '_get_prominent_objects') and hasattr(self.scene_describer, '_format_object_list_for_description') else ""
}
if current_run_enable_landmark and final_landmark_info.get("primary_landmark"):
llm_scene_data["primary_landmark_info"] = final_landmark_info["primary_landmark"]
if self.use_clip and clip_analysis_results and isinstance(clip_analysis_results, dict) and "top_scene" in clip_analysis_results:
clip_top_name = clip_analysis_results.get("top_scene",["unknown",0.0])[0]
clip_top_conf = clip_analysis_results.get("top_scene",["unknown",0.0])[1]
if clip_top_name != final_best_scene and clip_top_conf > 0.4 and final_scene_confidence > 0.4 and hasattr(self.llm_enhancer, 'verify_detection'):
llm_verification_output = self.llm_enhancer.verify_detection(
detected_objects_main, clip_analysis_results, final_best_scene,
self.SCENE_TYPES.get(final_best_scene, {}).get("name", "Unknown"), final_scene_confidence
)
if llm_verification_output : llm_scene_data["verification_result"] = llm_verification_output.get("verification_text", "")
enhanced_final_description = self.llm_enhancer.enhance_description(llm_scene_data)
if not current_run_enable_landmark and hasattr(self, '_remove_landmark_references'):
enhanced_final_description = self._remove_landmark_references(enhanced_final_description)
except Exception as e:
print(f"Error in LLM Enhancement in main flow (analyze method): {e}")
# Construct final output dictionary
output_result = {
"scene_type": final_best_scene if final_scene_confidence >= scene_confidence_threshold else "unknown",
"scene_name": self.SCENE_TYPES.get(final_best_scene, {}).get("name", "Unknown Scene") if final_scene_confidence >= scene_confidence_threshold else "Unknown Scene",
"confidence": round(float(final_scene_confidence), 4),
"description": base_scene_description,
"enhanced_description": enhanced_final_description,
"objects_present": [{"class_id": obj.get("class_id", -1), "class_name": obj.get("class_name", "unknown"), "confidence": round(float(obj.get("confidence",0.0)), 4)} for obj in detected_objects_main],
"object_count": len(detected_objects_main),
"regions": region_analysis_val,
"possible_activities": final_activities,
"safety_concerns": final_safety_concerns,
"functional_zones": final_functional_zones,
"alternative_scenes": self.descriptor._get_alternative_scenes(scene_scores_fused, scene_confidence_threshold, top_k=2) if hasattr(self.descriptor, '_get_alternative_scenes') else [],
"lighting_conditions": lighting_info if lighting_info else {"time_of_day": "unknown", "confidence": 0.0, "source": "default"}
}
if current_run_enable_landmark and final_landmark_info and final_landmark_info.get("detected_landmarks"):
output_result.update(final_landmark_info)
if final_best_scene in ["tourist_landmark", "natural_landmark", "historical_monument"]:
output_result["scene_source"] = "landmark_detection"
elif not current_run_enable_landmark:
for key_rm in ["detected_landmarks", "primary_landmark", "detailed_landmarks", "scene_source"]:
if key_rm in output_result: del output_result[key_rm]
if llm_verification_output:
output_result["llm_verification"] = llm_verification_output.get("verification_text")
if llm_verification_output.get("has_errors", False):
output_result["detection_warnings"] = "LLM detected potential issues with object recognition."
if clip_analysis_results and isinstance(clip_analysis_results, dict) and "error" not in clip_analysis_results:
top_scene_clip = clip_analysis_results.get("top_scene", ("unknown", 0.0))
output_result["clip_analysis"] = {
"top_scene": (top_scene_clip[0], round(float(top_scene_clip[1]), 4)),
"cultural_analysis": clip_analysis_results.get("cultural_analysis", {}) if current_run_enable_landmark else {}
}
return output_result
def _get_object_spatial_cohesion_score(self, objects_for_scene: List[Dict], spatial_analysis_results: Optional[Dict]) -> float:
"""
(This is a NEW helper function)
Calculates a score based on how spatially cohesive the key objects for a scene are.
A higher score means objects are more clustered in fewer regions.
This is a heuristic and can be refined.
Args:
objects_for_scene: List of detected objects (dictionaries with at least 'class_id')
relevant to the current scene type being evaluated.
spatial_analysis_results: Output from SpatialAnalyzer._analyze_regions.
Expected format: {'objects_by_region': {'region_name': [{'class_id': id, ...}, ...]}}
Returns:
float: A cohesion score, typically a small bonus (e.g., 0.0 to 0.1).
"""
if not objects_for_scene or not spatial_analysis_results or \
"objects_by_region" not in spatial_analysis_results or \
not spatial_analysis_results["objects_by_region"]:
return 0.0
# Get the set of class_ids for the key objects defining the current scene type
key_object_class_ids = {obj.get('class_id') for obj in objects_for_scene if obj.get('class_id') is not None}
if not key_object_class_ids:
return 0.0
# Find in which regions these key objects appear
regions_containing_key_objects = set()
# Count how many of the *instances* of key objects are found
# This helps differentiate a scene with 1 chair in 1 region vs 5 chairs spread over 5 regions
total_key_object_instances_found = 0
for region_name, objects_in_region_list in spatial_analysis_results["objects_by_region"].items():
region_has_key_object = False
for obj_in_region in objects_in_region_list:
if obj_in_region.get('class_id') in key_object_class_ids:
region_has_key_object = True
total_key_object_instances_found += 1 # Count each instance
if region_has_key_object:
regions_containing_key_objects.add(region_name)
num_distinct_key_objects_in_scene = len(key_object_class_ids) # Number of *types* of key objects
num_instances_of_key_objects_passed = len(objects_for_scene) # Number of *instances* passed for this scene
if not regions_containing_key_objects or num_instances_of_key_objects_passed == 0:
return 0.0
# A simple heuristic:
if len(regions_containing_key_objects) == 1 and total_key_object_instances_found >= num_instances_of_key_objects_passed * 0.75:
return 0.10 # Strongest cohesion: most/all key object instances in a single region
elif len(regions_containing_key_objects) <= 2 and total_key_object_instances_found >= num_instances_of_key_objects_passed * 0.60:
return 0.05 # Moderate cohesion: most/all key object instances in up to two regions
elif len(regions_containing_key_objects) <= 3 and total_key_object_instances_found >= num_instances_of_key_objects_passed * 0.50:
return 0.02 # Weaker cohesion
return 0.0
def _compute_scene_scores(self, detected_objects: List[Dict], spatial_analysis_results: Optional[Dict] = None) -> Dict[str, float]:
"""
Compute confidence scores for each scene type based on detected objects.
Enhanced to better score everyday scenes and consider object richness and spatial cohesion.
Args:
detected_objects: List of detected objects with their details (class_id, confidence, region, etc.).
spatial_analysis_results: Optional output from SpatialAnalyzer, specifically 'objects_by_region',
which is used by _get_object_spatial_cohesion_score.
Returns:
Dictionary mapping scene types to confidence scores.
"""
scene_scores = {}
if not detected_objects:
for scene_type_key in self.SCENE_TYPES:
scene_scores[scene_type_key] = 0.0
return scene_scores
# Prepare data from detected_objects
detected_class_ids_all = [obj["class_id"] for obj in detected_objects]
detected_classes_set_all = set(detected_class_ids_all)
class_counts_all = {}
for obj in detected_objects:
class_id = obj["class_id"]
class_counts_all[class_id] = class_counts_all.get(class_id, 0) + 1
# Evaluate each scene type defined in self.SCENE_TYPES
for scene_type, scene_def in self.SCENE_TYPES.items():
required_obj_ids_defined = set(scene_def.get("required_objects", []))
optional_obj_ids_defined = set(scene_def.get("optional_objects", []))
min_required_matches_needed = scene_def.get("minimum_required", 0)
# Determine which actual detected objects are relevant for this scene_type
# These lists will store the actual detected object dicts, not just class_ids
actual_required_objects_found_list = []
for req_id in required_obj_ids_defined:
if req_id in detected_classes_set_all:
# Find first instance of this required object to add to list (for cohesion check later)
for dobj in detected_objects:
if dobj['class_id'] == req_id:
actual_required_objects_found_list.append(dobj)
break
num_required_matches_found = len(actual_required_objects_found_list)
actual_optional_objects_found_list = []
for opt_id in optional_obj_ids_defined:
if opt_id in detected_classes_set_all:
for dobj in detected_objects:
if dobj['class_id'] == opt_id:
actual_optional_objects_found_list.append(dobj)
break
num_optional_matches_found = len(actual_optional_objects_found_list)
# --- Initial Score Calculation Weights ---
# Base score: 55% from required, 25% from optional, 10% richness, 10% cohesion (max)
required_weight = 0.55
optional_weight = 0.25
richness_bonus_max = 0.10
cohesion_bonus_max = 0.10 # Max bonus from _get_object_spatial_cohesion_score is 0.1
current_scene_score = 0.0
objects_to_check_for_cohesion = [] # For spatial cohesion scoring
# --- Check minimum_required condition & Calculate base score ---
if num_required_matches_found >= min_required_matches_needed:
if len(required_obj_ids_defined) > 0:
required_ratio = num_required_matches_found / len(required_obj_ids_defined)
else: # No required objects defined, but min_required_matches_needed could be 0
required_ratio = 1.0 if min_required_matches_needed == 0 else 0.0
current_scene_score = required_ratio * required_weight
objects_to_check_for_cohesion.extend(actual_required_objects_found_list)
# Add score from optional objects
if len(optional_obj_ids_defined) > 0:
optional_ratio = num_optional_matches_found / len(optional_obj_ids_defined)
current_scene_score += optional_ratio * optional_weight
objects_to_check_for_cohesion.extend(actual_optional_objects_found_list)
# Flexible handling for "everyday scenes" if strict minimum_required (based on 'required_objects') isn't met
elif scene_type in self.EVERYDAY_SCENE_TYPE_KEYS:
# If an everyday scene has many optional items, it might still be a weak candidate
# Check if a decent proportion of its 'optional_objects' are present
if len(optional_obj_ids_defined) > 0 and \
(num_optional_matches_found / len(optional_obj_ids_defined)) >= 0.25: # e.g., at least 25% of typical optional items
# Base score more on optional fulfillment for these types
current_scene_score = (num_optional_matches_found / len(optional_obj_ids_defined)) * (required_weight + optional_weight * 0.5) # Give some base
objects_to_check_for_cohesion.extend(actual_optional_objects_found_list)
else:
scene_scores[scene_type] = 0.0
continue # Skip this scene type
else: # For non-everyday scenes, if minimum_required is not met, score is 0
scene_scores[scene_type] = 0.0
continue
# --- Bonus for object richness/variety ---
# Considers unique object *classes* found that are relevant to the scene definition
relevant_defined_class_ids = required_obj_ids_defined.union(optional_obj_ids_defined)
unique_relevant_detected_classes = relevant_defined_class_ids.intersection(detected_classes_set_all)
object_richness_score = 0.0
if len(relevant_defined_class_ids) > 0:
richness_ratio = len(unique_relevant_detected_classes) / len(relevant_defined_class_ids)
object_richness_score = min(richness_bonus_max, richness_ratio * 0.15) # Max 10% bonus from richness
current_scene_score += object_richness_score
# --- Bonus for spatial cohesion (if spatial_analysis_results are provided) ---
spatial_cohesion_bonus = 0.0
if spatial_analysis_results and objects_to_check_for_cohesion:
# Deduplicate objects_to_check_for_cohesion based on actual object instances (not just class_id)
# This can be done by converting list of dicts to list of tuples of items for hashing
# However, assuming _get_object_spatial_cohesion_score handles instances correctly.
# If objects_to_check_for_cohesion might have duplicate dict references for the SAME object,
# then a more robust deduplication on actual object references would be needed if not already handled.
# For now, assume it's a list of unique object *instances* found relevant to the scene.
spatial_cohesion_bonus = self._get_object_spatial_cohesion_score(
objects_to_check_for_cohesion, # Pass the list of actual detected object dicts
spatial_analysis_results
)
current_scene_score += spatial_cohesion_bonus # Max 0.1 from this bonus
# --- Bonus for multiple instances of key objects (original logic refined) ---
multiple_instance_bonus = 0.0
# For multiple instance bonus, focus on objects central to the scene's definition
key_objects_for_multi_instance_check = required_obj_ids_defined
if scene_type in self.EVERYDAY_SCENE_TYPE_KEYS and len(optional_obj_ids_defined) > 0:
# For everyday scenes, some optionals can also be key if they appear multiple times
# e.g., multiple chairs in a "general_indoor_space"
key_objects_for_multi_instance_check = key_objects_for_multi_instance_check.union(
set(list(optional_obj_ids_defined)[:max(1, len(optional_obj_ids_defined)//2)]) # consider first half of optionals
)
for class_id_check in key_objects_for_multi_instance_check:
if class_id_check in detected_classes_set_all and class_counts_all.get(class_id_check, 0) > 1:
multiple_instance_bonus += 0.025 # Slightly smaller bonus per type
current_scene_score += min(0.075, multiple_instance_bonus) # Max 7.5% bonus
# Apply scene-specific priority defined in SCENE_TYPES
if "priority" in scene_def:
current_scene_score *= scene_def["priority"]
scene_scores[scene_type] = min(1.0, max(0.0, current_scene_score))
# If landmark detection is disabled via the instance attribute self.enable_landmark,
# ensure scores for landmark-specific scene types are zeroed out.
if hasattr(self, 'enable_landmark') and not self.enable_landmark:
landmark_scene_types = ["tourist_landmark", "natural_landmark", "historical_monument"]
for lm_scene_type in landmark_scene_types:
if lm_scene_type in scene_scores:
scene_scores[lm_scene_type] = 0.0
return scene_scores
def _determine_scene_type(self, scene_scores: Dict[str, float]) -> Tuple[str, float]:
"""
Determine the most likely scene type based on scores.
Args:
scene_scores: Dictionary mapping scene types to confidence scores
Returns:
Tuple of (best_scene_type, confidence)
"""
if not scene_scores:
return "unknown", 0.0
best_scene = max(scene_scores, key=scene_scores.get)
best_score = scene_scores[best_scene]
return best_scene, float(best_score)
def _fuse_scene_scores(self,
yolo_scene_scores: Dict[str, float],
clip_scene_scores: Dict[str, float],
num_yolo_detections: int = 0,
avg_yolo_confidence: float = 0.0,
lighting_info: Optional[Dict] = None,
places365_info: Optional[Dict] = None
) -> Dict[str, float]:
"""
Fuse scene scores from YOLO-based object detection, CLIP-based analysis, and Places365 scene classification.
Adjusts weights based on scene type, richness of YOLO detections, lighting information, and Places365 confidence.
Args:
yolo_scene_scores: Scene scores based on YOLO object detection.
clip_scene_scores: Scene scores based on CLIP analysis.
num_yolo_detections: Total number of non-landmark objects detected by YOLO with sufficient confidence.
avg_yolo_confidence: Average confidence of non-landmark objects detected by YOLO.
lighting_info: Optional lighting condition analysis results,
expected to contain 'is_indoor' (bool) and 'confidence' (float).
places365_info: Optional Places365 scene classification results,
expected to contain 'mapped_scene_type', 'confidence', and 'is_indoor'.
Returns:
Dict: Fused scene scores incorporating all three analysis sources.
"""
# Handle cases where one of the score dictionaries might be empty or all scores are effectively zero
# Extract and process Places365 scene scores
places365_scene_scores_map = {} # 修改變數名稱以避免與傳入的字典衝突
if places365_info and places365_info.get('confidence', 0) > 0.1:
mapped_scene_type = places365_info.get('mapped_scene_type', 'unknown')
places365_confidence = places365_info.get('confidence', 0.0)
if mapped_scene_type in self.SCENE_TYPES.keys():
places365_scene_scores_map[mapped_scene_type] = places365_confidence # 使用新的字典
print(f"Places365 contributing: {mapped_scene_type} with confidence {places365_confidence:.3f}")
yolo_has_meaningful_scores = bool(yolo_scene_scores and any(s > 1e-5 for s in yolo_scene_scores.values())) # 確保是布林值
clip_has_meaningful_scores = bool(clip_scene_scores and any(s > 1e-5 for s in clip_scene_scores.values())) # 確保是布林值
places365_has_meaningful_scores = bool(places365_scene_scores_map and any(s > 1e-5 for s in places365_scene_scores_map.values()))
meaningful_sources_count = sum([
yolo_has_meaningful_scores,
clip_has_meaningful_scores,
places365_has_meaningful_scores
])
if meaningful_sources_count == 0:
return {st: 0.0 for st in self.SCENE_TYPES.keys()}
elif meaningful_sources_count == 1:
if yolo_has_meaningful_scores:
return {st: yolo_scene_scores.get(st, 0.0) for st in self.SCENE_TYPES.keys()}
elif clip_has_meaningful_scores:
return {st: clip_scene_scores.get(st, 0.0) for st in self.SCENE_TYPES.keys()}
elif places365_has_meaningful_scores:
return {st: places365_scene_scores_map.get(st, 0.0) for st in self.SCENE_TYPES.keys()}
fused_scores = {}
all_relevant_scene_types = set(self.SCENE_TYPES.keys())
all_possible_scene_types = all_relevant_scene_types.union(
set(yolo_scene_scores.keys()),
set(clip_scene_scores.keys()),
set(places365_scene_scores_map.keys())
)
# Base weights - adjusted to accommodate three sources
default_yolo_weight = 0.5
default_clip_weight = 0.3
default_places365_weight = 0.2
is_lighting_indoor = None
lighting_analysis_confidence = 0.0
if lighting_info and isinstance(lighting_info, dict):
is_lighting_indoor = lighting_info.get("is_indoor")
lighting_analysis_confidence = lighting_info.get("confidence", 0.0)
for scene_type in all_possible_scene_types:
yolo_score = yolo_scene_scores.get(scene_type, 0.0)
clip_score = clip_scene_scores.get(scene_type, 0.0)
places365_score = places365_scene_scores_map.get(scene_type, 0.0)
current_yolo_weight = default_yolo_weight
current_clip_weight = default_clip_weight
current_places365_weight = default_places365_weight
scene_definition = self.SCENE_TYPES.get(scene_type, {})
# Weight adjustment based on scene_type nature and YOLO richness
if scene_type in self.EVERYDAY_SCENE_TYPE_KEYS:
# Places365 excels at everyday scene classification
if num_yolo_detections >= 5 and avg_yolo_confidence >= 0.45: # Rich YOLO for everyday
current_yolo_weight = 0.60
current_clip_weight = 0.15
current_places365_weight = 0.25
elif num_yolo_detections >= 3: # Moderate YOLO for everyday
current_yolo_weight = 0.50
current_clip_weight = 0.20
current_places365_weight = 0.30
else: # Sparse YOLO for everyday, rely more on Places365
current_yolo_weight = 0.35
current_clip_weight = 0.25
current_places365_weight = 0.40
# For scenes where CLIP's global understanding or specific training is often more valuable
elif any(keyword in scene_type.lower() for keyword in ["asian", "cultural", "aerial", "landmark", "monument", "tourist", "natural_landmark", "historical_monument"]):
current_yolo_weight = 0.25
current_clip_weight = 0.65
current_places365_weight = 0.10 # Lower weight for landmark scenes
# For specific indoor common scenes (non-landmark), object detection is key but Places365 provides strong scene context
elif any(keyword in scene_type.lower() for keyword in
["room", "kitchen", "office", "bedroom", "desk_area", "indoor_space",
"professional_kitchen", "cafe", "library", "gym", "retail_store",
"supermarket", "classroom", "conference_room", "medical_facility",
"educational_setting", "dining_area"]):
current_yolo_weight = 0.55
current_clip_weight = 0.20
current_places365_weight = 0.25
# For specific outdoor common scenes (non-landmark) where objects are still important
elif any(keyword in scene_type.lower() for keyword in
["parking_lot", "park_area", "beach", "harbor", "playground", "sports_field", "bus_stop", "train_station", "airport"]):
current_yolo_weight = 0.50
current_clip_weight = 0.25
current_places365_weight = 0.25
# If landmark detection is globally disabled for this run
if hasattr(self, 'enable_landmark') and not self.enable_landmark:
if any(keyword in scene_type.lower() for keyword in ["landmark", "monument", "tourist"]):
yolo_score = 0.0 # Should already be 0 from _compute_scene_scores
clip_score *= 0.05 # Heavily penalize
places365_score *= 0.8 if scene_type not in self.EVERYDAY_SCENE_TYPE_KEYS else 1.0 # Slight penalty for landmark scenes
elif scene_type not in self.EVERYDAY_SCENE_TYPE_KEYS and \
not any(keyword in scene_type.lower() for keyword in ["asian", "cultural", "aerial"]):
# Redistribute weights away from CLIP towards YOLO and Places365
weight_boost = 0.05
current_yolo_weight = min(0.9, current_yolo_weight + weight_boost)
current_places365_weight = min(0.9, current_places365_weight + weight_boost)
current_clip_weight = max(0.1, current_clip_weight - weight_boost * 2)
# Boost Places365 weight if it has high confidence for this specific scene type
if places365_score > 0.0 and places365_info: # 這裡的 places365_score 已經是從 map 中獲取
places365_original_confidence = places365_info.get('confidence', 0.0) # 獲取原始的 Places365 信心度
if places365_original_confidence > 0.7:
boost_factor = min(0.2, (places365_original_confidence - 0.7) * 0.4)
current_places365_weight += boost_factor
total_other_weight = current_yolo_weight + current_clip_weight
if total_other_weight > 0:
reduction_factor = boost_factor / total_other_weight
current_yolo_weight *= (1 - reduction_factor)
current_clip_weight *= (1 - reduction_factor)
total_weight = current_yolo_weight + current_clip_weight + current_places365_weight
if total_weight > 0: # 避免除以零
current_yolo_weight /= total_weight
current_clip_weight /= total_weight
current_places365_weight /= total_weight
else:
current_yolo_weight = 1/3
current_clip_weight = 1/3
current_places365_weight = 1/3
fused_score = (yolo_score * current_yolo_weight) + (clip_score * current_clip_weight) + (places365_score * current_places365_weight)
places365_is_indoor = None
places365_confidence_for_indoor = 0.0
effective_is_indoor = is_lighting_indoor
effective_confidence = lighting_analysis_confidence
if places365_info and isinstance(places365_info, dict):
places365_is_indoor = places365_info.get('is_indoor')
places365_confidence_for_indoor = places365_info.get('confidence', 0.0)
# Places365 overrides lighting analysis when confidence is high
if places365_confidence_for_indoor >= 0.8 and places365_is_indoor is not None:
effective_is_indoor = places365_is_indoor
effective_confidence = places365_confidence_for_indoor
# 只在特定場景類型首次處理時輸出調試資訊
if scene_type == "intersection" or (scene_type in ["urban_intersection", "street_view"] and scene_type == sorted(all_possible_scene_types)[0]):
print(f"DEBUG: Using Places365 indoor/outdoor decision: {places365_is_indoor} (confidence: {places365_confidence_for_indoor:.3f}) over lighting analysis")
if effective_is_indoor is not None and effective_confidence >= 0.65:
# Determine if the scene_type is inherently indoor or outdoor based on its definition
is_defined_as_indoor = "indoor" in scene_definition.get("description", "").lower() or \
any(kw in scene_type.lower() for kw in ["room", "kitchen", "office", "indoor", "library", "cafe", "gym"])
is_defined_as_outdoor = "outdoor" in scene_definition.get("description", "").lower() or \
any(kw in scene_type.lower() for kw in ["street", "park", "aerial", "beach", "harbor", "intersection", "crosswalk"])
lighting_adjustment_strength = 0.20 # Max adjustment factor (e.g., 20%)
# Scale adjustment by how confident the analysis is above the threshold
adjustment_scale = (effective_confidence - 0.65) / (1.0 - 0.65) # Scale from 0 to 1
adjustment = lighting_adjustment_strength * adjustment_scale
adjustment = min(lighting_adjustment_strength, max(0, adjustment)) # Clamp adjustment
if effective_is_indoor and is_defined_as_outdoor:
fused_score *= (1.0 - adjustment)
elif not effective_is_indoor and is_defined_as_indoor:
fused_score *= (1.0 - adjustment)
elif effective_is_indoor and is_defined_as_indoor:
fused_score = min(1.0, fused_score * (1.0 + adjustment * 0.5))
elif not effective_is_indoor and is_defined_as_outdoor:
fused_score = min(1.0, fused_score * (1.0 + adjustment * 0.5))
fused_scores[scene_type] = min(1.0, max(0.0, fused_score))
return fused_scores
def process_unknown_objects(self, detection_result, detected_objects):
"""
對YOLO未能識別或信心度低的物體進行地標檢測
Args:
detection_result: YOLO檢測結果
detected_objects: 已識別的物體列表
Returns:
tuple: (更新後的物體列表, 地標物體列表)
"""
if not getattr(self, 'enable_landmark', True) or not self.use_clip or not hasattr(self, 'use_landmark_detection') or not self.use_landmark_detection:
# 未啟用地標識別時,確保返回的物體列表中不包含任何地標物體
cleaned_objects = [obj for obj in detected_objects if not obj.get("is_landmark", False)]
return cleaned_objects, []
try:
# 獲取原始圖像
original_image = None
if detection_result is not None and hasattr(detection_result, 'orig_img'):
original_image = detection_result.orig_img
# 檢查原始圖像是否存在
if original_image is None:
print("Warning: Original image not available for landmark detection")
return detected_objects, []
# 確保原始圖像為PIL格式或可轉換為PIL格式
if not isinstance(original_image, Image.Image):
if isinstance(original_image, np.ndarray):
try:
if original_image.ndim == 3 and original_image.shape[2] == 4: # RGBA
original_image = original_image[:, :, :3] # 轉換為RGB
if original_image.ndim == 2: # 灰度圖
original_image = Image.fromarray(original_image).convert("RGB")
else: # 假設為RGB或BGR
original_image = Image.fromarray(original_image)
if hasattr(original_image, 'mode') and original_image.mode == 'BGR': # 從OpenCV明確將BGR轉換為RGB
original_image = original_image.convert('RGB')
except Exception as e:
print(f"Warning: Error converting image for landmark detection: {e}")
return detected_objects, []
else:
print(f"Warning: Cannot process image of type {type(original_image)}")
return detected_objects, []
# 獲取圖像維度
if isinstance(original_image, np.ndarray):
h, w = original_image.shape[:2]
elif isinstance(original_image, Image.Image):
w, h = original_image.size
else:
print(f"Warning: Unable to determine image dimensions for type {type(original_image)}")
return detected_objects, []
# 收集可能含有地標的區域
candidate_boxes = []
low_conf_boxes = []
# 即使沒有YOLO檢測到的物體,也嘗試進行更詳細的地標分析
if len(detected_objects) == 0:
# 創建一個包含整個圖像的框
full_image_box = [0, 0, w, h]
low_conf_boxes.append(full_image_box)
candidate_boxes.append((full_image_box, "full_image"))
# 加入網格分析以增加檢測成功率
grid_size = 2 # 2x2網格
for i in range(grid_size):
for j in range(grid_size):
# 創建網格框
grid_box = [
j * w / grid_size,
i * h / grid_size,
(j + 1) * w / grid_size,
(i + 1) * h / grid_size
]
low_conf_boxes.append(grid_box)
candidate_boxes.append((grid_box, "grid"))
# 創建更大的中心框(覆蓋中心70%區域)
center_box = [
w * 0.15, h * 0.15,
w * 0.85, h * 0.85
]
low_conf_boxes.append(center_box)
candidate_boxes.append((center_box, "center"))
print("No YOLO detections, attempting detailed landmark analysis with multiple regions")
else:
try:
# 獲取原始YOLO檢測結果中的低置信度物體
if hasattr(detection_result, 'boxes') and hasattr(detection_result.boxes, 'xyxy') and hasattr(detection_result.boxes, 'conf') and hasattr(detection_result.boxes, 'cls'):
all_boxes = detection_result.boxes.xyxy.cpu().numpy() if hasattr(detection_result.boxes.xyxy, 'cpu') else detection_result.boxes.xyxy
all_confs = detection_result.boxes.conf.cpu().numpy() if hasattr(detection_result.boxes.conf, 'cpu') else detection_result.boxes.conf
all_cls = detection_result.boxes.cls.cpu().numpy() if hasattr(detection_result.boxes.cls, 'cpu') else detection_result.boxes.cls
# 收集低置信度區域和可能含有地標的區域(如建築物)
for i, (box, conf, cls) in enumerate(zip(all_boxes, all_confs, all_cls)):
is_low_conf = conf < 0.4 and conf > 0.1
# 根據物體類別 ID 識別建築物 - 使用通用分類
common_building_classes = [11, 12, 13, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65] # 常見建築類別 ID
is_building = int(cls) in common_building_classes
# 計算相對面積 - 大物體
is_large_object = (box[2] - box[0]) * (box[3] - box[1]) > (0.1 * w * h)
if is_low_conf or is_building:
# 確保 box 是一個有效的數組或列表
if isinstance(box, (list, tuple, np.ndarray)) and len(box) >= 4:
low_conf_boxes.append(box)
if is_large_object:
candidate_boxes.append((box, "building" if is_building else "low_conf"))
except Exception as e:
print(f"Error processing YOLO detections: {e}")
import traceback
traceback.print_exc()
if not hasattr(self, 'landmark_classifier'):
if hasattr(self, 'clip_analyzer') and hasattr(self.clip_analyzer, 'get_clip_instance'):
try:
print("Initializing landmark classifier for process_unknown_objects")
model, preprocess, device = self.clip_analyzer.get_clip_instance()
self.landmark_classifier = CLIPZeroShotClassifier(device=device)
except Exception as e:
print(f"Error initializing landmark classifier: {e}")
return detected_objects, []
else:
print("Warning: landmark_classifier not available and cannot be initialized")
return detected_objects, []
# 使用智能地標搜索
landmark_results = None
try:
# 確保有有效的框
if not low_conf_boxes:
# 如果沒有低置信度框,添加全圖
low_conf_boxes.append([0, 0, w, h])
landmark_results = self.landmark_classifier.intelligent_landmark_search(
original_image,
yolo_boxes=low_conf_boxes,
base_threshold=0.25
)
except Exception as e:
print(f"Error in intelligent_landmark_search: {e}")
import traceback
traceback.print_exc()
return detected_objects, []
# 處理識別結果
landmark_objects = []
# 如果有效的地標結果
if landmark_results and landmark_results.get("is_landmark_scene", False):
for landmark_info in landmark_results.get("detected_landmarks", []):
try:
# 使用 landmark_classifier 的閾值判斷
base_threshold = 0.25 # 基礎閾值
# 獲取地標類型並設定閾值
landmark_type = "architectural" # 預設類型
type_threshold = 0.5 # 預設閾值
# 優先使用 landmark_classifier
if hasattr(self, 'landmark_classifier') and hasattr(self.landmark_classifier, '_determine_landmark_type'):
landmark_type = self.landmark_classifier._determine_landmark_type(landmark_info.get("landmark_id", ""))
type_threshold = getattr(self.landmark_classifier, 'landmark_type_thresholds', {}).get(landmark_type, 0.5)
# 否則使用本地方法
elif hasattr(self, '_determine_landmark_type'):
landmark_type = self._determine_landmark_type(landmark_info.get("landmark_id", ""))
# 依據地標類型調整閾值
if landmark_type == "skyscraper":
type_threshold = 0.4
elif landmark_type == "natural":
type_threshold = 0.6
# 或者直接從地標 ID 推斷
else:
landmark_id = landmark_info.get("landmark_id", "").lower()
if any(term in landmark_id for term in ["mountain", "canyon", "waterfall", "lake", "river", "natural"]):
landmark_type = "natural"
type_threshold = 0.6
elif any(term in landmark_id for term in ["skyscraper", "building", "tower", "tall"]):
landmark_type = "skyscraper"
type_threshold = 0.4
elif any(term in landmark_id for term in ["monument", "memorial", "statue", "historical"]):
landmark_type = "monument"
type_threshold = 0.5
effective_threshold = base_threshold * (type_threshold / 0.5)
# 如果置信度足夠高
if landmark_info.get("confidence", 0) > effective_threshold:
# 獲取邊界框
if "box" in landmark_info:
box = landmark_info["box"]
else:
# 如果沒有邊界框,使用整個圖像的90%區域
margin_x, margin_y = w * 0.05, h * 0.05
box = [margin_x, margin_y, w - margin_x, h - margin_y]
# 計算中心點和其他必要信息
center_x = (box[0] + box[2]) / 2
center_y = (box[1] + box[3]) / 2
norm_center_x = center_x / w if w > 0 else 0.5
norm_center_y = center_y / h if h > 0 else 0.5
# 獲取區域位置
region = "center" # 預設
if hasattr(self, 'spatial_analyzer') and hasattr(self.spatial_analyzer, '_determine_region'):
try:
region = self.spatial_analyzer._determine_region(norm_center_x, norm_center_y)
except Exception as e:
print(f"Error determining region: {e}")
# 創建地標物體
landmark_obj = {
"class_id": landmark_info.get("landmark_id", "")[:15] if isinstance(landmark_info.get("landmark_id", ""), str) else "-100", # 截斷過長的 ID
"class_name": landmark_info.get("landmark_name", "Unknown Landmark"),
"confidence": landmark_info.get("confidence", 0.0),
"box": box,
"center": (center_x, center_y),
"normalized_center": (norm_center_x, norm_center_y),
"size": (box[2] - box[0], box[3] - box[1]),
"normalized_size": (
(box[2] - box[0]) / w if w > 0 else 0,
(box[3] - box[1]) / h if h > 0 else 0
),
"area": (box[2] - box[0]) * (box[3] - box[1]),
"normalized_area": (
(box[2] - box[0]) * (box[3] - box[1]) / (w * h) if w * h > 0 else 0
),
"region": region,
"is_landmark": True,
"landmark_id": landmark_info.get("landmark_id", ""),
"location": landmark_info.get("location", "Unknown Location")
}
# 添加額外信息
for key in ["year_built", "architectural_style", "significance"]:
if key in landmark_info:
landmark_obj[key] = landmark_info[key]
# 添加地標類型
landmark_obj["landmark_type"] = landmark_type
# 添加到檢測物體列表
detected_objects.append(landmark_obj)
landmark_objects.append(landmark_obj)
print(f"Detected landmark: {landmark_info.get('landmark_name', 'Unknown')} with confidence {landmark_info.get('confidence', 0.0):.2f}")
except Exception as e:
print(f"Error processing landmark: {e}")
continue
return detected_objects, landmark_objects
return detected_objects, []
except Exception as e:
print(f"Error in landmark detection: {e}")
import traceback
traceback.print_exc()
return detected_objects, []
def _remove_landmark_references(self, text):
"""
從文本中移除所有地標引用
Args:
text: 輸入文本
Returns:
str: 清除地標引用後的文本
"""
if not text:
return text
import re
try:
# 動態收集所有地標名稱和位置
landmark_names = []
locations = []
for landmark_id, info in ALL_LANDMARKS.items():
# 收集地標名稱及其別名
landmark_names.append(info["name"])
landmark_names.extend(info.get("aliases", []))
# 收集地理位置
if "location" in info:
location = info["location"]
locations.append(location)
# 處理分離的城市和國家名稱
parts = location.split(",")
if len(parts) >= 1:
locations.append(parts[0].strip())
if len(parts) >= 2:
locations.append(parts[1].strip())
# 使用正則表達式動態替換所有地標名稱
for name in landmark_names:
if name and len(name) > 2: # 避免過短的名稱
text = re.sub(r'\b' + re.escape(name) + r'\b', "tall structure", text, flags=re.IGNORECASE)
# 動態替換所有位置引用
for location in locations:
if location and len(location) > 2:
# 替換常見位置表述模式
text = re.sub(r'in ' + re.escape(location), "in the urban area", text, flags=re.IGNORECASE)
text = re.sub(r'of ' + re.escape(location), "of the urban area", text, flags=re.IGNORECASE)
text = re.sub(r'\b' + re.escape(location) + r'\b', "the urban area", text, flags=re.IGNORECASE)
except ImportError:
# 通用地標描述模式
landmark_patterns = [
# 地標地點模式
(r'an iconic structure in ([A-Z][a-zA-Z\s,]+)', r'an urban structure'),
(r'a famous (monument|tower|landmark) in ([A-Z][a-zA-Z\s,]+)', r'an urban structure'),
(r'(the [A-Z][a-zA-Z\s]+ Tower)', r'the tower'),
(r'(the [A-Z][a-zA-Z\s]+ Building)', r'the building'),
(r'(the CN Tower)', r'the tower'),
(r'([A-Z][a-zA-Z\s]+) Tower', r'tall structure'),
# 地標位置關係模式
(r'(centered|built|located|positioned) around the ([A-Z][a-zA-Z\s]+? (Tower|Monument|Landmark))', r'located in this area'),
# 地標活動模式
(r'(sightseeing|guided tours|cultural tourism) (at|around|near) (this landmark|the [A-Z][a-zA-Z\s]+)', r'\1 in this area'),
# 一般性地標形容模式
(r'this (famous|iconic|historic|well-known) (landmark|monument|tower|structure)', r'this urban structure'),
(r'landmark scene', r'urban scene'),
(r'tourist destination', r'urban area'),
(r'tourist attraction', r'urban area')
]
for pattern, replacement in landmark_patterns:
text = re.sub(pattern, replacement, text, flags=re.IGNORECASE)
return text
|