import os import re import json import logging import random import numpy as np from typing import Dict, List, Tuple, Any, Optional from scene_type import SCENE_TYPES from scene_detail_templates import SCENE_DETAIL_TEMPLATES from object_template_fillers import OBJECT_TEMPLATE_FILLERS from lighting_conditions import LIGHTING_CONDITIONS from viewpoint_templates import VIEWPOINT_TEMPLATES from cultural_templates import CULTURAL_TEMPLATES from confidence_templates import CONFIDENCE_TEMPLATES from landmark_data import ALL_LANDMARKS class EnhancedSceneDescriber: """ Enhanced scene description generator with improved template handling, viewpoint awareness, and cultural context recognition. Provides detailed natural language descriptions of scenes based on detection results and scene classification. """ def __init__(self, templates_db: Optional[Dict] = None, scene_types: Optional[Dict] = None, spatial_analyzer_instance: Optional[Any] = None): """ Initialize the enhanced scene describer. Args: templates_db: Optional custom templates database scene_types: Dictionary of scene type definitions """ self.logger = logging.getLogger(self.__class__.__name__) # Use class name for logger self.logger.setLevel(logging.INFO) # Or your desired logging level # Optional: Add a handler if not configured globally if not self.logger.hasHandlers(): handler = logging.StreamHandler() formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) self.logger.addHandler(handler) # Load or use provided scene types self.scene_types = scene_types or self._load_default_scene_types() # Load templates database self.templates = templates_db or self._load_templates() # Initialize viewpoint detection parameters self._initialize_viewpoint_parameters() def _load_default_scene_types(self) -> Dict: """ Load default scene types. Returns: Dict: Scene type definitions """ return SCENE_TYPES def _load_templates(self) -> Dict: """ Load description templates from imported Python modules. Returns: Dict: Template collections for different description components """ templates = {} # 載入事先準備的模板 templates["scene_detail_templates"] = SCENE_DETAIL_TEMPLATES templates["object_template_fillers"] = OBJECT_TEMPLATE_FILLERS templates["viewpoint_templates"] = VIEWPOINT_TEMPLATES templates["cultural_templates"] = CULTURAL_TEMPLATES # 從 LIGHTING_CONDITIONS 獲取照明模板 templates["lighting_templates"] = { key: data["general"] for key, data in LIGHTING_CONDITIONS.get("time_descriptions", {}).items() } # 設置默認的置信度模板 templates["confidence_templates"] = { "high": "{description} {details}", "medium": "This appears to be {description} {details}", "low": "This might be {description}, but the confidence is low. {details}" } # 初始化其他必要的模板(現在這個函數簡化了很多) self._initialize_default_templates(templates) return templates def _initialize_default_templates(self, templates: Dict): """ 檢查模板字典並填充任何缺失的默認模板。 在將模板移至專門的模組後,此方法主要作為安全機制, 確保即使導入失敗或某些模板未在外部定義,系統仍能正常運行。 Args: templates: 要檢查和更新的模板字典 """ # 檢查關鍵模板類型是否存在,如果不存在則添加默認值 # 置信度模板 - 用於控制描述的語氣 if "confidence_templates" not in templates: templates["confidence_templates"] = { "high": "{description} {details}", "medium": "This appears to be {description} {details}", "low": "This might be {description}, but the confidence is low. {details}" } # 場景細節模板 if "scene_detail_templates" not in templates: templates["scene_detail_templates"] = { "default": ["A space with various objects."] } # 物體填充模板,用於生成物體描述 if "object_template_fillers" not in templates: templates["object_template_fillers"] = { "default": ["various items"] } # 視角模板,雖然現在從專門模組導入,但可作為備份 if "viewpoint_templates" not in templates: # 使用簡化版的默認視角模板 templates["viewpoint_templates"] = { "eye_level": { "prefix": "From eye level, ", "observation": "the scene is viewed straight on." }, "aerial": { "prefix": "From above, ", "observation": "the scene is viewed from a bird's-eye perspective." } } # 文化模板 if "cultural_templates" not in templates: templates["cultural_templates"] = { "asian": { "elements": ["cultural elements"], "description": "The scene has Asian characteristics." }, "european": { "elements": ["architectural features"], "description": "The scene has European characteristics." } } # 照明模板 - 用於描述光照條件 if "lighting_templates" not in templates: templates["lighting_templates"] = { "day_clear": "The scene is captured during daylight.", "night": "The scene is captured at night.", "unknown": "The lighting conditions are not easily determined." } def _initialize_viewpoint_parameters(self): """ Initialize parameters used for viewpoint detection. """ self.viewpoint_params = { # Parameters for detecting aerial views "aerial_threshold": 0.7, # High object density viewed from top "aerial_size_variance_threshold": 0.15, # Low size variance in aerial views # Parameters for detecting low angle views "low_angle_threshold": 0.3, # Bottom-heavy object distribution "vertical_size_ratio_threshold": 1.8, # Vertical objects appear taller # Parameters for detecting elevated views "elevated_threshold": 0.6, # Objects mostly in middle/bottom "elevated_top_threshold": 0.3 # Few objects at top of frame } def _generate_landmark_description(self, scene_type: str, detected_objects: List[Dict], confidence: float, lighting_info: Optional[Dict] = None, functional_zones: Optional[Dict] = None, landmark_objects: Optional[List[Dict]] = None) -> str: """ 生成包含地標信息的場景描述 Args: scene_type: 識別的場景類型 detected_objects: 檢測到的物體列表 confidence: 場景分類置信度 lighting_info: 照明條件信息(可選) functional_zones: 功能區域信息(可選) landmark_objects: 識別為地標的物體列表(可選) Returns: str: 包含地標信息的自然語言場景描述 """ # 如果沒有提供地標物體,則從檢測物體中篩選 if landmark_objects is None: landmark_objects = [obj for obj in detected_objects if obj.get("is_landmark", False)] # 如果沒有地標,退回到標準描述 if not landmark_objects: if scene_type in ["tourist_landmark", "natural_landmark", "historical_monument"]: # 場景類型是地標但沒有具體地標物體 base_description = "A scenic area that appears to be a tourist destination, though specific landmarks are not clearly identifiable." else: # 使用標準方法生成基本描述 return self._format_final_description(self._generate_scene_details( scene_type, detected_objects, lighting_info, self._detect_viewpoint(detected_objects) )) else: # 獲取主要地標(信心度最高的) primary_landmark = max(landmark_objects, key=lambda x: x.get("confidence", 0)) landmark_name = primary_landmark.get("class_name", "landmark") landmark_location = primary_landmark.get("location", "") # 根據地標類型選擇適當的描述模板 if scene_type == "natural_landmark" or primary_landmark.get("landmark_type") == "natural": base_description = f"A natural landmark scene featuring {landmark_name} in {landmark_location}." elif scene_type == "historical_monument" or primary_landmark.get("landmark_type") == "monument": base_description = f"A historical monument scene showcasing {landmark_name}, a significant landmark in {landmark_location}." else: base_description = f"A tourist landmark scene centered around {landmark_name}, an iconic structure in {landmark_location}." # 加地標的額外信息 landmark_details = [] for landmark in landmark_objects: details = [] # 加建造年份 if "year_built" in landmark: details.append(f"built in {landmark['year_built']}") # 加建築風格 if "architectural_style" in landmark: details.append(f"featuring {landmark['architectural_style']} architectural style") # 加重要性 if "significance" in landmark: details.append(landmark["significance"]) # 如果有詳細信息,加到描述中 if details: landmark_details.append(f"{landmark['class_name']} ({', '.join(details)})") # 將詳細信息添加到基本描述中 if landmark_details: description = base_description + " " + "The scene features " + ", ".join(landmark_details) + "." else: description = base_description # 獲取視角 viewpoint = self._detect_viewpoint(detected_objects) # 生成人員活動描述 people_count = len([obj for obj in detected_objects if obj["class_id"] == 0]) # 人的類別ID通常為0 if people_count > 0: if people_count == 1: people_description = "There is one person in the scene, likely a tourist or visitor." elif people_count < 5: people_description = f"There are {people_count} people in the scene, possibly tourists visiting the landmark." else: people_description = f"The scene includes a group of {people_count} people, indicating this is a popular tourist destination." description = self._smart_append(description, people_description) # 添加照明信息 if lighting_info and "time_of_day" in lighting_info: lighting_type = lighting_info["time_of_day"] if lighting_type in self.templates.get("lighting_templates", {}): lighting_description = self.templates["lighting_templates"][lighting_type] description = self._smart_append(description, lighting_description) # 添加視角描述 if viewpoint != "eye_level" and viewpoint in self.templates.get("viewpoint_templates", {}): viewpoint_template = self.templates["viewpoint_templates"][viewpoint] # 添加視角前綴 prefix = viewpoint_template.get('prefix', '') if prefix and not description.startswith(prefix): # 保持句子流暢性 if description and description[0].isupper(): description = prefix + description[0].lower() + description[1:] else: description = prefix + description # 添加視角觀察描述 viewpoint_desc = viewpoint_template.get("observation", "").format( scene_elements="the landmark and surrounding area" ) if viewpoint_desc and viewpoint_desc not in description: description = self._smart_append(description, viewpoint_desc) # 添加功能區域描述 if functional_zones and len(functional_zones) > 0: zones_desc = self._describe_functional_zones(functional_zones) if zones_desc: description = self._smart_append(description, zones_desc) # 描述可能的活動 landmark_activities = [] # 根據地標類型生成通用活動 if scene_type == "natural_landmark" or any(obj.get("landmark_type") == "natural" for obj in landmark_objects): landmark_activities = [ "nature photography", "scenic viewing", "hiking or walking", "guided nature tours", "outdoor appreciation" ] elif scene_type == "historical_monument" or any(obj.get("landmark_type") == "monument" for obj in landmark_objects): landmark_activities = [ "historical sightseeing", "educational tours", "cultural appreciation", "photography of historical architecture", "learning about historical significance" ] else: landmark_activities = [ "sightseeing", "taking photographs", "guided tours", "cultural tourism", "souvenir shopping" ] # 添加活動描述 if landmark_activities: activities_text = "Common activities at this location include " + ", ".join(landmark_activities[:3]) + "." description = self._smart_append(description, activities_text) # 最後格式化描述 return self._format_final_description(description) def filter_landmark_references(self, text, enable_landmark=True): """ 動態過濾文本中的地標引用 Args: text: 需要過濾的文本 enable_landmark: 是否啟用地標功能 Returns: str: 過濾後的文本 """ if enable_landmark or not text: return text try: # 動態收集所有地標名稱和位置 landmark_names = [] locations = [] for landmark_id, info in ALL_LANDMARKS.items(): # 收集地標名稱及其別名 landmark_names.append(info["name"]) landmark_names.extend(info.get("aliases", [])) # 收集地理位置 if "location" in info: location = info["location"] locations.append(location) # 處理分離的城市和國家名稱 parts = location.split(",") if len(parts) >= 1: locations.append(parts[0].strip()) if len(parts) >= 2: locations.append(parts[1].strip()) # 使用正則表達式動態替換所有地標名稱 import re for name in landmark_names: if name and len(name) > 2: # 避免過短的名稱 text = re.sub(r'\b' + re.escape(name) + r'\b', "tall structure", text, flags=re.IGNORECASE) # 動態替換所有位置引用 for location in locations: if location and len(location) > 2: # 替換常見位置表述模式 text = re.sub(r'in ' + re.escape(location), "in the urban area", text, flags=re.IGNORECASE) text = re.sub(r'of ' + re.escape(location), "of the urban area", text, flags=re.IGNORECASE) text = re.sub(r'\b' + re.escape(location) + r'\b', "the urban area", text, flags=re.IGNORECASE) except ImportError: # 如果無法導入,使用基本模式 pass # 通用地標描述模式替換 landmark_patterns = [ (r'a (tourist|popular|famous) landmark', r'an urban structure'), (r'an iconic structure in ([A-Z][a-zA-Z\s,]+)', r'an urban structure in the area'), (r'a famous (monument|tower|landmark) in ([A-Z][a-zA-Z\s,]+)', r'an urban structure in the area'), (r'(centered|built|located|positioned) around the ([A-Z][a-zA-Z\s]+? (Tower|Monument|Landmark))', r'located in this area'), (r'(sightseeing|guided tours|cultural tourism) (at|around|near) (this landmark|the [A-Z][a-zA-Z\s]+)', r'\1 in this area'), (r'this (famous|iconic|historic|well-known) (landmark|monument|tower|structure)', r'this urban structure'), (r'([A-Z][a-zA-Z\s]+) Tower', r'tall structure'), (r'a (tower|structure) in ([A-Z][a-zA-Z\s,]+)', r'a \1 in the area'), (r'landmark scene', r'urban scene'), (r'tourist destination', r'urban area'), (r'tourist attraction', r'urban area') ] for pattern, replacement in landmark_patterns: text = re.sub(pattern, replacement, text, flags=re.IGNORECASE) return text def generate_description(self, scene_type: str, detected_objects: List[Dict], confidence: float, lighting_info: Dict, functional_zones: List[str], enable_landmark: bool = True, scene_scores: Optional[Dict] = None, spatial_analysis: Optional[Dict] = None, image_dimensions: Optional[Dict] = None, places365_info: Optional[Dict] = None, object_statistics: Optional[Dict] = None) -> str: """ Generate enhanced scene description based on detection results, scene type, and additional contextual information. This version ensures that the main scene_details (from the first call) is properly integrated and not overwritten by a simplified second call. """ # Handle unknown scene type or very low confidence as an early exit if scene_type == "unknown" or confidence < 0.4: # _generate_generic_description should also ideally use image_dimensions if it does spatial reasoning generic_desc = self._generate_generic_description(detected_objects, lighting_info) return self._format_final_description(generic_desc) # Filter out landmark objects if landmark detection is disabled for this run current_detected_objects = detected_objects if not enable_landmark: current_detected_objects = [obj for obj in detected_objects if not obj.get("is_landmark", False)] # Log Places365 context if available places365_context = "" if places365_info and places365_info.get('confidence', 0) > 0.3: scene_label = places365_info.get('scene_label', '') attributes = places365_info.get('attributes', []) is_indoor = places365_info.get('is_indoor', None) if scene_label: places365_context = f"Scene context: {scene_label}" if attributes: places365_context += f" with characteristics: {', '.join(attributes[:3])}" if is_indoor is not None: indoor_outdoor = "indoor" if is_indoor else "outdoor" places365_context += f" ({indoor_outdoor} environment)" print(f"Enhanced description incorporating Places365 context: {places365_context}") landmark_objects_in_scene = [obj for obj in current_detected_objects if obj.get("is_landmark", False)] has_landmark_in_scene = len(landmark_objects_in_scene) > 0 # If landmark processing is enabled and it's a landmark scene or landmarks are detected if enable_landmark and (scene_type in ["tourist_landmark", "natural_landmark", "historical_monument"] or has_landmark_in_scene): landmark_desc = self._generate_landmark_description( scene_type, current_detected_objects, # Pass potentially filtered list confidence, lighting_info, functional_zones, landmark_objects_in_scene # Pass the explicitly filtered landmark objects ) return self._format_final_description(landmark_desc) # **[Start of main description construction for non-landmark or landmark-disabled everyday scenes]** # Detect viewpoint based on current (potentially filtered) objects viewpoint = self._detect_viewpoint(current_detected_objects) current_scene_type = scene_type # Use a mutable variable for scene_type if it can change # Process aerial viewpoint scene types (may re-assign current_scene_type) if viewpoint == "aerial": if "intersection" in current_scene_type.lower() or self._is_intersection(current_detected_objects): # Use lower for robustness current_scene_type = "aerial_view_intersection" elif any(keyword in current_scene_type.lower() for keyword in ["commercial", "shopping", "retail"]): current_scene_type = "aerial_view_commercial_area" elif any(keyword in current_scene_type.lower() for keyword in ["plaza", "square"]): current_scene_type = "aerial_view_plaza" else: # Default aerial if specific not matched current_scene_type = "aerial_view_general" # Or use a specific default like aerial_view_intersection # Detect cultural context (only for non-aerial viewpoints) cultural_context = None if viewpoint != "aerial": cultural_context = self._detect_cultural_context(current_scene_type, current_detected_objects) # Get base description for the (potentially updated) scene type base_description = "A scene" # Default initialization if viewpoint == "aerial": # Check if current_scene_type (which might be an aerial type) has a base description if current_scene_type in self.scene_types: base_description = self.scene_types[current_scene_type].get("description", "An aerial view showing the layout and movement patterns from above") else: base_description = "An aerial view showing the layout and movement patterns from above" elif current_scene_type in self.scene_types: base_description = self.scene_types[current_scene_type].get("description", "A scene") # spatial analysis, and image dimensions. This is where dynamic description or template filling happens. core_scene_details = self._generate_scene_details( current_scene_type, # Use the potentially updated scene_type current_detected_objects, lighting_info, viewpoint, spatial_analysis=spatial_analysis, # Pass this through image_dimensions=image_dimensions, # Pass this through places365_info=places365_info, # Pass Places365 info object_statistics=object_statistics # Pass object statistics ) # Start with the base description derived from SCENE_TYPES or a default. description = base_description if core_scene_details and core_scene_details.strip() != "": # Ensure core_scene_details is not empty # If base_description is generic like "A scene", consider replacing it or appending smartly. if base_description.lower() == "a scene" and len(core_scene_details) > len(base_description): description = core_scene_details # Prioritize dynamic/template-filled details if base is too generic else: description = self._smart_append(description, core_scene_details) elif not core_scene_details and not description: # If both are empty, use a generic fallback description = self._generate_generic_description(current_detected_objects, lighting_info) # Append secondary description from scene type template, if any if current_scene_type in self.scene_types and "secondary_description" in self.scene_types[current_scene_type]: secondary_desc = self.scene_types[current_scene_type]["secondary_description"] if secondary_desc: description = self._smart_append(description, secondary_desc) # Append people count information people_objs = [obj for obj in current_detected_objects if obj.get("class_id") == 0] if people_objs: people_count = len(people_objs) if people_count == 1: people_phrase = "a single person" elif people_count > 1 and people_count <= 3: people_phrase = f"{people_count} people" # Accurate for small counts elif people_count > 3 and people_count <=7: people_phrase = "several people" else: people_phrase = "multiple people" # For larger counts, or use "numerous" # Only add if not already well covered in core_scene_details or base_description if "person" not in description.lower() and "people" not in description.lower() and "pedestrian" not in description.lower(): description = self._smart_append(description, f"The scene includes {people_phrase}.") # Append cultural context if cultural_context and viewpoint != "aerial": # Already checked viewpoint cultural_elements = self._generate_cultural_elements(cultural_context) if cultural_elements: description = self._smart_append(description, cultural_elements) # Append lighting information lighting_description_text = "" if lighting_info and "time_of_day" in lighting_info: lighting_type = lighting_info["time_of_day"] lighting_desc_template = self.templates.get("lighting_templates", {}).get(lighting_type) if lighting_desc_template: lighting_description_text = lighting_desc_template if lighting_description_text and lighting_description_text.lower() not in description.lower(): description = self._smart_append(description, lighting_description_text) # Append viewpoint information (if not eye-level) if viewpoint != "eye_level" and viewpoint in self.templates.get("viewpoint_templates", {}): viewpoint_template = self.templates["viewpoint_templates"][viewpoint] prefix = viewpoint_template.get('prefix', '') observation_template = viewpoint_template.get("observation", "") # Determine scene_elements for the observation template scene_elements_for_vp = "the overall layout and objects" # Generic default if viewpoint == "aerial": scene_elements_for_vp = "crossing patterns and general layout" viewpoint_observation_text = observation_template.format(scene_elements=scene_elements_for_vp) # Combine prefix and observation carefully full_viewpoint_text = "" if prefix: full_viewpoint_text = prefix.strip() + " " if viewpoint_observation_text and viewpoint_observation_text[0].islower(): full_viewpoint_text += viewpoint_observation_text elif viewpoint_observation_text: full_viewpoint_text = prefix + viewpoint_observation_text[0].lower() + viewpoint_observation_text[1:] if description else prefix + viewpoint_observation_text elif viewpoint_observation_text: # No prefix, but observation exists full_viewpoint_text = viewpoint_observation_text[0].upper() + viewpoint_observation_text[1:] if full_viewpoint_text and full_viewpoint_text.lower() not in description.lower(): description = self._smart_append(description, full_viewpoint_text) # Append functional zones information if functional_zones and len(functional_zones) > 0: zones_desc_text = self._describe_functional_zones(functional_zones) if zones_desc_text: description = self._smart_append(description, zones_desc_text) final_formatted_description = self._format_final_description(description) if not enable_landmark: final_formatted_description = self.filter_landmark_references(final_formatted_description, enable_landmark=False) # If after all processing, description is empty, fallback to a very generic one. if not final_formatted_description.strip() or final_formatted_description.strip() == ".": self.logger.warning(f"Description for scene_type '{current_scene_type}' became empty after processing. Falling back.") final_formatted_description = self._format_final_description( self._generate_generic_description(current_detected_objects, lighting_info) ) return final_formatted_description def _smart_append(self, current_text: str, new_fragment: str) -> str: """ Intelligently append a new text fragment to the current text, handling punctuation and capitalization correctly. Args: current_text: The existing text to append to new_fragment: The new text fragment to append Returns: str: The combined text with proper formatting """ # Handle empty cases if not new_fragment: return current_text if not current_text: # Ensure first character is uppercase for the first fragment return new_fragment[0].upper() + new_fragment[1:] if new_fragment else "" # Clean up existing text current_text = current_text.rstrip() # Check for ending punctuation ends_with_sentence = current_text.endswith(('.', '!', '?')) ends_with_comma = current_text.endswith(',') # Specifically handle the "A xxx A yyy" pattern that's causing issues if (current_text.startswith("A ") or current_text.startswith("An ")) and \ (new_fragment.startswith("A ") or new_fragment.startswith("An ")): return current_text + ". " + new_fragment # 檢查新片段是否包含地標名稱(通常為專有名詞) has_landmark_name = any(word[0].isupper() for word in new_fragment.split() if len(word) > 2 and not word.startswith(("A ", "An ", "The "))) # Decide how to join the texts if ends_with_sentence: # After a sentence, start with uppercase and add proper spacing joined_text = current_text + " " + (new_fragment[0].upper() + new_fragment[1:]) elif ends_with_comma: # After a comma, maintain flow with lowercase unless it's a proper noun or special case if new_fragment.startswith(('I ', 'I\'', 'A ', 'An ', 'The ')) or new_fragment[0].isupper() or has_landmark_name: joined_text = current_text + " " + new_fragment else: joined_text = current_text + " " + new_fragment[0].lower() + new_fragment[1:] elif "scene is" in new_fragment.lower() or "scene includes" in new_fragment.lower(): # When adding a new sentence about the scene, use a period joined_text = current_text + ". " + new_fragment else: # For other cases, decide based on the content if self._is_related_phrases(current_text, new_fragment): if new_fragment.startswith(('I ', 'I\'', 'A ', 'An ', 'The ')) or new_fragment[0].isupper() or has_landmark_name: joined_text = current_text + ", " + new_fragment else: joined_text = current_text + ", " + new_fragment[0].lower() + new_fragment[1:] else: # Use period for unrelated phrases joined_text = current_text + ". " + (new_fragment[0].upper() + new_fragment[1:]) return joined_text def _is_related_phrases(self, text1: str, text2: str) -> bool: """ Determine if two phrases are related and should be connected with a comma rather than separated with a period. Args: text1: The first text fragment text2: The second text fragment to be appended Returns: bool: Whether the phrases appear to be related """ # Check if either phrase starts with "A" or "An" - these are likely separate descriptions if (text1.startswith("A ") or text1.startswith("An ")) and \ (text2.startswith("A ") or text2.startswith("An ")): return False # These are separate descriptions, not related phrases # Check if the second phrase starts with a connecting word connecting_words = ["which", "where", "who", "whom", "whose", "with", "without", "this", "these", "that", "those", "and", "or", "but"] first_word = text2.split()[0].lower() if text2 else "" if first_word in connecting_words: return True # Check if the first phrase ends with something that suggests continuity ending_patterns = ["such as", "including", "like", "especially", "particularly", "for example", "for instance", "namely", "specifically"] for pattern in ending_patterns: if text1.lower().endswith(pattern): return True # Check if both phrases are about the scene if "scene" in text1.lower() and "scene" in text2.lower(): return False # Separate statements about the scene should be separate sentences return False def _format_final_description(self, text: str) -> str: """ Format the final description text to ensure correct punctuation, capitalization, and spacing. """ if not text or not text.strip(): # Also check if text is just whitespace return "" # Trim leading/trailing whitespace first text = text.strip() # 1. Handle consecutive "A/An" segments (potentially split them into sentences) text = re.sub(r'(A\s+[^.!?]+?[\w\.])\s+(A\s+)', r'\1. \2', text, flags=re.IGNORECASE) text = re.sub(r'(An\s+[^.!?]+?[\w\.])\s+(An?\s+)', r'\1. \2', text, flags=re.IGNORECASE) # 2. Ensure first character of the entire text is uppercase if text: text = text[0].upper() + text[1:] # 3. Normalize whitespace: multiple spaces to one text = re.sub(r'\s{2,}', ' ', text) # 4. Capitalize after sentence-ending punctuation (. ! ?) def capitalize_after_punctuation(match): return match.group(1) + match.group(2).upper() text = re.sub(r'([.!?]\s+)([a-z])', capitalize_after_punctuation, text) # 5. Handle capitalization after commas (your existing robust logic is good) def fix_capitalization_after_comma(match): leading_comma_space = match.group(1) # (,\s+) word_after_comma = match.group(2) # ([A-Z][a-zA-Z]*) proper_nouns_exceptions = ["I", "I'm", "I've", "I'd", "I'll", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday", "January", "February", "March", "April", "May", "June", "July", "August", "September", "October", "November", "December"] if word_after_comma in proper_nouns_exceptions: return match.group(0) # If the word looks like a proper noun (e.g., multi-word capitalized, or a known location/brand) # This heuristic can be tricky. For simplicity, if it's already capitalized and not a common word, keep it. if len(word_after_comma) > 2 and word_after_comma[0].isupper() and word_after_comma.lower() not in ["this", "that", "these", "those", "they", "their", "then", "thus"]: return match.group(0) # Keep it if it looks like a proper noun already return leading_comma_space + word_after_comma[0].lower() + word_after_comma[1:] text = re.sub(r'(,\s+)([A-Z][a-zA-Z\'\-]+)', fix_capitalization_after_comma, text) # Added hyphen and apostrophe to word # 6. Correct spacing around punctuation text = re.sub(r'\s*([.,;:!?])\s*', r'\1 ', text) # Ensures one space AFTER punctuation, none before text = text.replace(' .', '.').replace(' ,', ',') # Clean up potential space before period/comma from previous rule # 7. Consolidate multiple sentence-ending punctuations (e.g., "!!", "?.", ".?") text = re.sub(r'[.!?]{2,}', '.', text) # Convert multiple to a single period text = re.sub(r',+', ',', text) # Multiple commas to one # 8. Ensure text ends with a single sentence-ending punctuation mark text = text.strip() # Remove trailing whitespace before checking last char if text and not text[-1] in '.!?': text += '.' # 9. Remove any leading punctuation or extra spaces that might have been introduced text = re.sub(r'^[.,;:!?\s]+', '', text) # 10. Final check for first letter capitalization if text: text = text[0].upper() + text[1:] # 11. Remove space before final punctuation mark if accidentally added by rule 7 text = re.sub(r'\s+([.!?])$', r'\1', text) return text.strip() # Final strip def _is_intersection(self, detected_objects: List[Dict]) -> bool: """ 通過分析物體分佈來判斷場景是否為十字路口 """ # 檢查行人分佈模式 pedestrians = [obj for obj in detected_objects if obj["class_id"] == 0] if len(pedestrians) >= 8: # 需要足夠的行人來形成十字路口 # 抓取行人位置 positions = [obj.get("normalized_center", (0, 0)) for obj in pedestrians] # 分析 x 和 y 坐標分佈 x_coords = [pos[0] for pos in positions] y_coords = [pos[1] for pos in positions] # 計算 x 和 y 坐標的變異數 x_variance = np.var(x_coords) if len(x_coords) > 1 else 0 y_variance = np.var(y_coords) if len(y_coords) > 1 else 0 # 計算範圍 x_range = max(x_coords) - min(x_coords) y_range = max(y_coords) - min(y_coords) # 如果 x 和 y 方向都有較大範圍且範圍相似,那就有可能是十字路口 if x_range > 0.5 and y_range > 0.5 and 0.7 < (x_range / y_range) < 1.3: return True return False def _generate_generic_description(self, detected_objects: List[Dict], lighting_info: Optional[Dict] = None) -> str: """ Generate a generic description when scene type is unknown or confidence is very low. Args: detected_objects: List of detected objects lighting_info: Optional lighting condition information Returns: str: Generic description based on detected objects """ # Count object occurrences obj_counts = {} for obj in detected_objects: class_name = obj["class_name"] if class_name not in obj_counts: obj_counts[class_name] = 0 obj_counts[class_name] += 1 # Get top objects by count top_objects = sorted(obj_counts.items(), key=lambda x: x[1], reverse=True)[:5] if not top_objects: base_desc = "No clearly identifiable objects are visible in this scene." else: # Format object list objects_text = [] for name, count in top_objects: if count > 1: objects_text.append(f"{count} {name}s") else: objects_text.append(name) if len(objects_text) == 1: objects_list = objects_text[0] elif len(objects_text) == 2: objects_list = f"{objects_text[0]} and {objects_text[1]}" else: objects_list = ", ".join(objects_text[:-1]) + f", and {objects_text[-1]}" base_desc = f"This scene contains {objects_list}." # Add lighting information if available if lighting_info and "time_of_day" in lighting_info: lighting_type = lighting_info["time_of_day"] if lighting_type in self.templates.get("lighting_templates", {}): lighting_desc = self.templates["lighting_templates"][lighting_type] base_desc += f" {lighting_desc}" return base_desc def _get_prominent_objects(self, detected_objects: List[Dict], min_prominence_score: float = 0.1, max_categories_to_return: int = 5, max_total_objects: int = 7) -> List[Dict]: """ Helper function to get the most prominent objects. Prioritizes high-confidence, large objects, and ensures a diversity of object types. Args: detected_objects: List of detected objects. min_prominence_score: Minimum score for an object to be considered initially. max_categories_to_return: Max number of different object categories to prioritize. max_total_objects: Overall cap on the number of prominent objects returned. Returns: List of prominent detected objects. """ if not detected_objects: return [] scored_objects = [] for obj in detected_objects: area = obj.get("normalized_area", 0.0) + 1e-6 confidence = obj.get("confidence", 0.0) # Base score: area and confidence are key score = (area * 0.65) + (confidence * 0.35) # Slightly more weight to area # Bonus for generally important object classes (in a generic way) # This is a simple heuristic. More advanced would be context-dependent. # For example, 'person' is often more salient. # Avoid hardcoding specific class_ids here if possible, or use broad categories if available. # For simplicity, we'll keep the landmark bonus for now. if obj.get("class_name") == "person": # Example: person is generally prominent score += 0.1 if obj.get("is_landmark"): # Landmarks are always prominent score += 0.5 if score >= min_prominence_score: scored_objects.append((obj, score)) if not scored_objects: return [] # Sort by score in descending order scored_objects.sort(key=lambda x: x[1], reverse=True) # Prioritize diversity of object categories first prominent_by_category = {} final_prominent_objects = [] for obj, score in scored_objects: category = obj.get("class_name", "unknown") if category not in prominent_by_category: if len(prominent_by_category) < max_categories_to_return: prominent_by_category[category] = obj final_prominent_objects.append(obj) elif len(final_prominent_objects) < max_total_objects and obj not in final_prominent_objects: if score > 0.3: final_prominent_objects.append(obj) # If still under max_total_objects, fill with highest scored remaining objects regardless of category if len(final_prominent_objects) < max_total_objects: for obj, score in scored_objects: if len(final_prominent_objects) >= max_total_objects: break if obj not in final_prominent_objects: final_prominent_objects.append(obj) # Re-sort the final list by original prominence score to maintain order final_prominent_objects_with_scores = [] for obj in final_prominent_objects: for original_obj, original_score in scored_objects: if obj is original_obj: # Check for object identity final_prominent_objects_with_scores.append((obj, original_score)) break final_prominent_objects_with_scores.sort(key=lambda x: x[1], reverse=True) return [obj for obj, score in final_prominent_objects_with_scores[:max_total_objects]] def _format_object_list_for_description(self, objects: List[Dict], use_indefinite_article_for_one: bool = False, count_threshold_for_generalization: int = -1, # Default to -1 for precise counts max_types_to_list: int = 5 ) -> str: """ Formats a list of detected objects into a human-readable string with counts. Args: objects: List of object dictionaries, each expected to have 'class_name'. use_indefinite_article_for_one: If True, uses "a/an" for single items. If False, uses "one". count_threshold_for_generalization: If count exceeds this, use general terms. -1 means precise counts. max_types_to_list: Maximum number of different object types to include in the list. """ if not objects: return "no specific objects clearly identified" counts: Dict[str, int] = {} for obj in objects: name = obj.get("class_name", "unknown object") if name == "unknown object" or not name: # Skip unknown or empty names continue counts[name] = counts.get(name, 0) + 1 if not counts: return "no specific objects clearly identified" descriptions = [] # Sort by count (desc) then name (asc) for consistent output order # Limit the number of distinct object types being listed sorted_counts = sorted(counts.items(), key=lambda item: (-item[1], item[0]))[:max_types_to_list] for name, count in sorted_counts: if count == 1: if use_indefinite_article_for_one: if name[0].lower() in 'aeiou': descriptions.append(f"an {name}") else: descriptions.append(f"a {name}") else: descriptions.append(f"one {name}") # Output "one car" instead of "a car" else: # count > 1 plural_name = name if name.endswith("y") and not name.lower().endswith(("ay", "ey", "iy", "oy", "uy")): plural_name = name[:-1] + "ies" elif name.endswith(("s", "sh", "ch", "x", "z")): plural_name = name + "es" elif not name.endswith("s"): # Avoid double 's' like "buss" plural_name = name + "s" if count_threshold_for_generalization != -1 and count > count_threshold_for_generalization: if count <= count_threshold_for_generalization + 3: descriptions.append(f"several {plural_name}") else: descriptions.append(f"many {plural_name}") else: # Use exact count (e.g., "6 cars") descriptions.append(f"{count} {plural_name}") if not descriptions: return "no specific objects clearly identified" if len(descriptions) == 1: return descriptions[0] elif len(descriptions) == 2: return f"{descriptions[0]} and {descriptions[1]}" else: # Oxford comma for lists of 3 or more. return ", ".join(descriptions[:-1]) + f", and {descriptions[-1]}" def _get_spatial_description(self, obj: Dict, image_width: Optional[int] = None, image_height: Optional[int] = None) -> str: """ Generates a brief spatial description for an object. (This is a new helper function) """ region = obj.get("region") if region: # Convert region name to more descriptive terms region_map = { "top_left": "in the top-left", "top_center": "at the top-center", "top_right": "in the top-right", "middle_left": "on the middle-left side", "middle_center": "in the center", "middle_right": "on the middle-right side", "bottom_left": "in the bottom-left", "bottom_center": "at the bottom-center", "bottom_right": "in the bottom-right" } # More general terms if exact region is not critical if "top" in region: general_v_pos = "towards the top" elif "bottom" in region: general_v_pos = "towards the bottom" else: general_v_pos = "in the middle vertically" if "left" in region: general_h_pos = "towards the left" elif "right" in region: general_h_pos = "towards the right" else: general_h_pos = "in the center horizontally" # Prioritize specific region if available, else use general specific_desc = region_map.get(region, "") if specific_desc: return f"{specific_desc} of the frame" else: return f"{general_v_pos} and {general_h_pos} of the frame" # Fallback if region info is not detailed enough or missing # We can use normalized_center if available norm_center = obj.get("normalized_center") if norm_center and image_width and image_height: # Check if image_width/height are provided x_norm, y_norm = norm_center h_pos = "left" if x_norm < 0.4 else "right" if x_norm > 0.6 else "center" v_pos = "top" if y_norm < 0.4 else "bottom" if y_norm > 0.6 else "middle" if h_pos == "center" and v_pos == "middle": return "near the center of the image" return f"in the {v_pos}-{h_pos} area of the image" return "in the scene" # Generic fallback def _generate_dynamic_everyday_description(self, detected_objects: List[Dict], lighting_info: Optional[Dict] = None, viewpoint: str = "eye_level", spatial_analysis: Optional[Dict] = None, image_dimensions: Optional[Tuple[int, int]] = None, places365_info: Optional[Dict] = None, object_statistics: Optional[Dict] = None ) -> str: """ Dynamically generates a description for everyday scenes based on ALL relevant detected_objects, their counts, and context. It aims to describe the overall scene first, then details of object groups including accurate counts. """ description_segments = [] image_width, image_height = image_dimensions if image_dimensions else (None, None) if hasattr(self, 'logger'): self.logger.info(f"DynamicDesc: Start. Total Raw Objects: {len(detected_objects)}, View: {viewpoint}, Light: {lighting_info is not None}") # 1. Overall Ambiance (Lighting and Viewpoint) ambiance_parts = [] if lighting_info: time_of_day = lighting_info.get("time_of_day", "unknown lighting") is_indoor = lighting_info.get("is_indoor") ambiance_statement = "This is" if is_indoor is True: ambiance_statement += " an indoor scene" elif is_indoor is False: ambiance_statement += " an outdoor scene" else: ambiance_statement += " a scene" lighting_map = self.templates.get("lighting_templates", {}) readable_lighting_base = lighting_map.get(time_of_day, f"with {time_of_day.replace('_', ' ')} lighting conditions") readable_lighting = readable_lighting_base.lower().replace("the scene is captured", "").replace("the scene has", "").strip() ambiance_statement += f", likely {readable_lighting}." ambiance_parts.append(ambiance_statement) if viewpoint and viewpoint != "eye_level": vp_templates = self.templates.get("viewpoint_templates", {}) if viewpoint in vp_templates: vp_prefix = vp_templates[viewpoint].get("prefix", "").strip() if vp_prefix: if not ambiance_parts: ambiance_parts.append(f"{vp_prefix.capitalize()} the general layout of the scene is observed.") else: ambiance_parts[-1] = ambiance_parts[-1].rstrip('.') + f", viewed {vp_templates[viewpoint].get('short_desc', viewpoint)}." if ambiance_parts: description_segments.append(" ".join(ambiance_parts)) # 2. Describe ALL detected objects, grouped by class, with accurate counts and locations if not detected_objects: # This part remains, but the conditions to reach here might change based on confident_objects check if not description_segments: description_segments.append("A general scene is visible, but no specific objects were clearly identified.") else: description_segments.append("Within this setting, no specific objects were clearly identified.") else: objects_by_class: Dict[str, List[Dict]] = {} # keeping 0.25 as a placeholder confidence_filter_threshold = getattr(self, 'confidence_threshold_for_description', 0.25) confident_objects = [obj for obj in detected_objects if obj.get("confidence", 0) >= confidence_filter_threshold] if not confident_objects: # This message is more appropriate if objects existed but none met confidence no_confident_obj_msg = "While some elements might be present, no objects were identified with sufficient confidence for a detailed description." if not description_segments: description_segments.append(no_confident_obj_msg) else: description_segments.append(no_confident_obj_msg.lower().capitalize()) # Append as a new sentence else: if object_statistics: # 使用預計算的統計信息,並採用動態置信度策略 for class_name, stats in object_statistics.items(): count = stats.get("count", 0) avg_confidence = stats.get("avg_confidence", 0) # 動態調整置信度閾值:裝飾性物品使用較低閾值 dynamic_threshold = confidence_filter_threshold if class_name in ["potted plant", "vase", "clock", "book"]: dynamic_threshold = max(0.15, confidence_filter_threshold * 0.6) elif count >= 3: # 數量多的物品降低閾值 dynamic_threshold = max(0.2, confidence_filter_threshold * 0.8) if count > 0 and avg_confidence >= dynamic_threshold: matching_objects = [obj for obj in confident_objects if obj.get("class_name") == class_name] if not matching_objects: # 如果高信心度的物體中沒有,從原始列表中尋找 matching_objects = [obj for obj in detected_objects if obj.get("class_name") == class_name and obj.get("confidence", 0) >= dynamic_threshold] if matching_objects: actual_count = min(stats["count"], len(matching_objects)) objects_by_class[class_name] = matching_objects[:actual_count] else: # 回退邏輯同樣使用動態閾值 for obj in confident_objects: name = obj.get("class_name", "unknown object") if name == "unknown object" or not name: continue if name not in objects_by_class: objects_by_class[name] = [] objects_by_class[name].append(obj) if not objects_by_class: # Should be rare if confident_objects was not empty and had valid names description_segments.append("No common objects were confidently identified for detailed description.") else: def sort_key_object_groups(item_tuple: Tuple[str, List[Dict]]): class_name_key, obj_group_list = item_tuple priority = 3 # 預設優先級 count = len(obj_group_list) # 動態優先級:基於場景相關性和數量 if class_name_key == "person": priority = 0 elif class_name_key in ["dining table", "chair", "sofa", "bed"]: priority = 1 # 室內主要家具 elif class_name_key in ["car", "bus", "truck", "traffic light"]: priority = 2 # 交通相關物體 elif count >= 3: # 數量多的物體提升優先級 priority = max(1, priority - 1) elif class_name_key in ["potted plant", "vase", "clock", "book"] and count >= 2: priority = 2 # 裝飾性物品有一定數量時提升優先級 avg_area = sum(o.get("normalized_area", 0.0) for o in obj_group_list) / len(obj_group_list) if obj_group_list else 0 # 增加數量權重:多個同類物體更重要 quantity_bonus = min(count / 5.0, 1.0) # 最多1.0的加成 return (priority, -len(obj_group_list), -avg_area, -quantity_bonus) # 去除重複的邏輯 deduplicated_objects_by_class = {} processed_positions = [] for class_name, group_of_objects in objects_by_class.items(): unique_objects = [] for obj in group_of_objects: obj_position = obj.get("normalized_center", [0.5, 0.5]) is_duplicate = False # 檢查是否與已處理的物體位置重疊 for processed_pos in processed_positions: position_distance = abs(obj_position[0] - processed_pos[0]) + abs(obj_position[1] - processed_pos[1]) if position_distance < 0.15: # 位置重疊閾值 is_duplicate = True break if not is_duplicate: unique_objects.append(obj) processed_positions.append(obj_position) if unique_objects: deduplicated_objects_by_class[class_name] = unique_objects objects_by_class = deduplicated_objects_by_class sorted_object_groups = sorted(objects_by_class.items(), key=sort_key_object_groups) object_clauses = [] # Stores individual object group descriptions for class_name, group_of_objects in sorted_object_groups: count = len(group_of_objects) if count == 0: continue # 使用統計信息確保準確的數量描述 if object_statistics and class_name in object_statistics: actual_count = object_statistics[class_name]["count"] # 根據實際統計數量生成描述 if actual_count == 1: formatted_name_with_exact_count = f"one {class_name}" else: plural_form = f"{class_name}s" if not class_name.endswith('s') else class_name formatted_name_with_exact_count = f"{actual_count} {plural_form}" else: # 回退到原有的格式化邏輯 formatted_name_with_exact_count = self._format_object_list_for_description( [group_of_objects[0]] * count, use_indefinite_article_for_one=False, count_threshold_for_generalization=-1 ) if formatted_name_with_exact_count == "no specific objects clearly identified" or not formatted_name_with_exact_count: continue # Determine collective location for the group location_description_suffix = "" # e.g., "is in the center" or "are in the west area" if count == 1: location_description_suffix = f"is {self._get_spatial_description(group_of_objects[0], image_width, image_height)}" else: distinct_regions = sorted(list(set(obj.get("region", "unknown_region") for obj in group_of_objects))) known_regions = [r for r in distinct_regions if r != "unknown_region"] if not known_regions and "unknown_region" in distinct_regions: location_description_suffix = "are visible in the scene" elif len(known_regions) == 1: location_description_suffix = f"are primarily in the {known_regions[0].replace('_', ' ')} area" elif len(known_regions) == 2: location_description_suffix = f"are mainly across the {known_regions[0].replace('_',' ')} and {known_regions[1].replace('_',' ')} areas" elif len(known_regions) > 2: location_description_suffix = "are distributed in various parts of the scene" else: location_description_suffix = "are visible in the scene" # Capitalize the object description (e.g., "Six cars") formatted_name_capitalized = formatted_name_with_exact_count[0].upper() + formatted_name_with_exact_count[1:] object_clauses.append(f"{formatted_name_capitalized} {location_description_suffix}") if object_clauses: # Join object clauses into one or more sentences. if not description_segments: # If no ambiance, start with the first object clause. if object_clauses: first_clause = object_clauses.pop(0) # Take the first one out description_segments.append(first_clause + ".") else: # Ambiance exists, prepend with "The scene features..." or similar if object_clauses: description_segments.append("The scene features:") # Or "Key elements include:" # Add remaining object clauses as separate points or a continuous sentence # For now, let's join them into a single continuous sentence string to be added. if object_clauses: # If there are more clauses after the first (or after "The scene features:") joined_object_clauses = ". ".join(object_clauses) if joined_object_clauses and not joined_object_clauses.endswith("."): joined_object_clauses += "." description_segments.append(joined_object_clauses) elif not description_segments : # No ambiance and no describable objects after filtering return "The image depicts a scene, but specific objects could not be described with confidence or detail." # --- Final assembly and formatting --- # Join all collected segments. _smart_append might be better if parts are not full sentences. # Since we aim for full sentences in segments, simple join then format. raw_description = "" for i, segment in enumerate(filter(None, description_segments)): segment = segment.strip() if not segment: continue if not raw_description: # First non-empty segment raw_description = segment else: if not raw_description.endswith(('.', '!', '?')): raw_description += "." raw_description += " " + (segment[0].upper() + segment[1:] if len(segment) > 1 else segment.upper()) if raw_description and not raw_description.endswith(('.', '!', '?')): raw_description += "." final_description = self._format_final_description(raw_description) # Crucial for final polish if not final_description or len(final_description.strip()) < 20: # Fallback if description is too short or empty after processing # Use a more informative fallback if confident_objects existed if 'confident_objects' in locals() and confident_objects: return "The scene contains several detected objects, but a detailed textual description could not be fully constructed." else: return "A general scene is depicted with no objects identified with high confidence." return final_description def _generate_scene_details(self, scene_type: str, detected_objects: List[Dict], lighting_info: Optional[Dict] = None, viewpoint: str = "eye_level", spatial_analysis: Optional[Dict] = None, image_dimensions: Optional[Tuple[int, int]] = None, places365_info: Optional[Dict] = None, object_statistics: Optional[Dict] = None ) -> str: """ Generate detailed description based on scene type and detected objects. Enhanced to handle everyday scenes dynamically with accurate object counting. Args: scene_type: Identified scene type. detected_objects: List of detected objects. lighting_info: Optional lighting condition information. viewpoint: Detected viewpoint (aerial, eye_level, etc.). spatial_analysis: Optional results from SpatialAnalyzer. image_dimensions: Optional tuple of (image_width, image_height). places365_info: Optional Places365 scene classification results. object_statistics: Optional detailed object statistics with counts and confidence. Returns: str: Detailed scene description. """ scene_details = "" scene_templates = self.templates.get("scene_detail_templates", {}) # List of scene types considered "everyday" or generic everyday_scene_types = [ "general_indoor_space", "generic_street_view", "desk_area_workspace", "outdoor_gathering_spot", "kitchen_counter_or_utility_area", "unknown" ] # Extract Places365 attributes for enhanced description places365_attributes = [] scene_specific_details = "" if places365_info and places365_info.get('confidence', 0) > 0.4: attributes = places365_info.get('attributes', []) scene_label = places365_info.get('scene_label', '') # Filter relevant attributes for description enhancement relevant_attributes = [attr for attr in attributes if attr in [ 'natural_lighting', 'artificial_lighting', 'commercial', 'residential', 'workplace', 'recreational', 'educational', 'open_space', 'enclosed_space' ]] places365_attributes = relevant_attributes[:2] # Generate scene-specific contextual details using object statistics if object_statistics: if 'commercial' in attributes and object_statistics.get('person', {}).get('count', 0) > 0: person_count = object_statistics['person']['count'] if person_count == 1: scene_specific_details = "This appears to be an active commercial environment with a customer present." else: scene_specific_details = f"This appears to be an active commercial environment with {person_count} people present." elif 'residential' in attributes and scene_type in ['living_room', 'bedroom', 'kitchen']: scene_specific_details = "The setting suggests a comfortable residential living space." elif 'workplace' in attributes and any(object_statistics.get(obj, {}).get('count', 0) > 0 for obj in ['laptop', 'keyboard', 'monitor']): scene_specific_details = "The environment indicates an active workspace or office setting." else: # Fallback to original logic if object_statistics not available if 'commercial' in attributes and any(obj['class_name'] in ['person', 'chair', 'table'] for obj in detected_objects): scene_specific_details = "This appears to be an active commercial environment with customer activity." elif 'residential' in attributes and scene_type in ['living_room', 'bedroom', 'kitchen']: scene_specific_details = "The setting suggests a comfortable residential living space." elif 'workplace' in attributes and any(obj['class_name'] in ['laptop', 'keyboard', 'monitor'] for obj in detected_objects): scene_specific_details = "The environment indicates an active workspace or office setting." # Determine scene description approach is_confident_specific_scene = scene_type not in everyday_scene_types and scene_type in scene_templates treat_as_everyday = scene_type in everyday_scene_types if hasattr(self, 'enable_landmark') and not self.enable_landmark: if scene_type not in ["kitchen", "bedroom", "living_room", "office_workspace", "dining_area", "professional_kitchen"]: treat_as_everyday = True if treat_as_everyday or not is_confident_specific_scene: # Generate dynamic description for everyday scenes with object statistics self.logger.info(f"Generating dynamic description for scene_type: {scene_type}") scene_details = self._generate_dynamic_everyday_description( detected_objects, lighting_info, viewpoint, spatial_analysis, image_dimensions, places365_info, object_statistics # Pass object statistics to dynamic description ) elif scene_type in scene_templates: # Use template-based description with enhanced object information self.logger.info(f"Using template for scene_type: {scene_type}") viewpoint_key = f"{scene_type}_{viewpoint}" templates_list = scene_templates.get(viewpoint_key, scene_templates.get(scene_type, [])) if templates_list: detail_template = random.choice(templates_list) scene_details = self._fill_detail_template( detail_template, detected_objects, scene_type, places365_info, object_statistics # Pass object statistics to template filling ) else: scene_details = self._generate_dynamic_everyday_description( detected_objects, lighting_info, viewpoint, spatial_analysis, image_dimensions, places365_info, object_statistics ) else: # Fallback to dynamic description with object statistics self.logger.info(f"No specific template for {scene_type}, generating dynamic description.") scene_details = self._generate_dynamic_everyday_description( detected_objects, lighting_info, viewpoint, spatial_analysis, image_dimensions, places365_info, object_statistics ) # Filter out landmark references if landmark detection is disabled if hasattr(self, 'enable_landmark') and not self.enable_landmark: scene_details = self.filter_landmark_references(scene_details, enable_landmark=False) return scene_details if scene_details else "A scene with some visual elements." def _fill_detail_template(self, template: str, detected_objects: List[Dict], scene_type: str, places365_info: Optional[Dict] = None, object_statistics: Optional[Dict] = None) -> str: """ Fill a template with specific details based on detected objects. Args: template: Template string with placeholders detected_objects: List of detected objects scene_type: Identified scene type Returns: str: Filled template """ # Find placeholders in the template using simple {placeholder} syntax import re placeholders = re.findall(r'\{([^}]+)\}', template) filled_template = template # Get object template fillers fillers = self.templates.get("object_template_fillers", {}) # 基於物品的統計資訊形成更準確的模板填充內容 statistics_based_replacements = {} if object_statistics: # 根據統計信息生成具體的物體描述 for class_name, stats in object_statistics.items(): count = stats.get("count", 0) if count > 0: # 為常見物體類別生成基於統計的描述 if class_name == "potted plant": if count == 1: statistics_based_replacements["plant_elements"] = "a potted plant" elif count <= 3: statistics_based_replacements["plant_elements"] = f"{count} potted plants" else: statistics_based_replacements["plant_elements"] = f"multiple potted plants ({count} total)" elif class_name == "chair": if count == 1: statistics_based_replacements["seating"] = "a chair" elif count <= 4: statistics_based_replacements["seating"] = f"{count} chairs" else: statistics_based_replacements["seating"] = f"numerous chairs ({count} total)" elif class_name == "person": if count == 1: statistics_based_replacements["people_and_vehicles"] = "a person" statistics_based_replacements["pedestrian_flow"] = "an individual walking" elif count <= 5: statistics_based_replacements["people_and_vehicles"] = f"{count} people" statistics_based_replacements["pedestrian_flow"] = f"{count} people walking" else: statistics_based_replacements["people_and_vehicles"] = f"many people ({count} individuals)" statistics_based_replacements["pedestrian_flow"] = f"a crowd of {count} people" # 為所有可能的變數設置默認值 default_replacements = { # 室內相關 "furniture": "various furniture pieces", "seating": "comfortable seating", "electronics": "entertainment devices", "bed_type": "a bed", "bed_location": "room", "bed_description": "sleeping arrangements", "extras": "personal items", "table_setup": "a dining table and chairs", "table_description": "a dining surface", "dining_items": "dining furniture and tableware", "appliances": "kitchen appliances", "kitchen_items": "cooking utensils and dishware", "cooking_equipment": "cooking equipment", "office_equipment": "work-related furniture and devices", "desk_setup": "a desk and chair", "computer_equipment": "electronic devices", # 室外/城市相關 "traffic_description": "vehicles and pedestrians", "people_and_vehicles": "people and various vehicles", "street_elements": "urban infrastructure", "park_features": "benches and greenery", "outdoor_elements": "natural features", "park_description": "outdoor amenities", "store_elements": "merchandise displays", "shopping_activity": "customers browse and shop", "store_items": "products for sale", # 高級餐廳相關 "design_elements": "elegant decor", "lighting": "stylish lighting fixtures", # 亞洲商業街相關 "storefront_features": "compact shops", "pedestrian_flow": "people walking", "asian_elements": "distinctive cultural elements", "cultural_elements": "traditional design features", "signage": "colorful signs", "street_activities": "busy urban activity", # 金融區相關 "buildings": "tall buildings", "traffic_elements": "vehicles", "skyscrapers": "high-rise buildings", "road_features": "wide streets", "architectural_elements": "modern architecture", "city_landmarks": "prominent structures", # 十字路口相關 "crossing_pattern": "marked pedestrian crossings", "pedestrian_behavior": "careful walking", "pedestrian_density": "groups of pedestrians", "traffic_pattern": "regulated traffic flow", # 交通樞紐相關 "transit_vehicles": "public transportation vehicles", "passenger_activity": "commuter movement", "transportation_modes": "various transit options", "passenger_needs": "waiting areas", "transit_infrastructure": "transit facilities", "passenger_movement": "commuter flow", # 購物區相關 "retail_elements": "shops and displays", "store_types": "various retail establishments", "walkway_features": "pedestrian pathways", "commercial_signage": "store signs", "consumer_behavior": "shopping activities", # 空中視角相關 "commercial_layout": "organized retail areas", "pedestrian_pattern": "people movement patterns", "gathering_features": "public gathering spaces", "movement_pattern": "crowd flow patterns", "urban_elements": "city infrastructure", "public_activity": "social interaction", # 文化特定元素 "stall_elements": "vendor booths", "lighting_features": "decorative lights", "food_elements": "food offerings", "vendor_stalls": "market stalls", "nighttime_activity": "evening commerce", "cultural_lighting": "traditional lighting", "night_market_sounds": "lively market sounds", "evening_crowd_behavior": "nighttime social activity", "architectural_elements": "cultural buildings", "religious_structures": "sacred buildings", "decorative_features": "ornamental designs", "cultural_practices": "traditional activities", "temple_architecture": "religious structures", "sensory_elements": "atmospheric elements", "visitor_activities": "cultural experiences", "ritual_activities": "ceremonial practices", "cultural_symbols": "meaningful symbols", "architectural_style": "historical buildings", "historic_elements": "traditional architecture", "urban_design": "city planning elements", "social_behaviors": "public interactions", "european_features": "European architectural details", "tourist_activities": "visitor activities", "local_customs": "regional practices", # 時間特定元素 "lighting_effects": "artificial lighting", "shadow_patterns": "light and shadow", "urban_features": "city elements", "illuminated_elements": "lit structures", "evening_activities": "nighttime activities", "light_sources": "lighting points", "lit_areas": "illuminated spaces", "shadowed_zones": "darker areas", "illuminated_signage": "bright signs", "colorful_lighting": "multicolored lights", "neon_elements": "neon signs", "night_crowd_behavior": "evening social patterns", "light_displays": "lighting installations", "building_features": "architectural elements", "nightlife_activities": "evening entertainment", "lighting_modifier": "bright", # 混合環境元素 "transitional_elements": "connecting features", "indoor_features": "interior elements", "outdoor_setting": "exterior spaces", "interior_amenities": "inside comforts", "exterior_features": "outside elements", "inside_elements": "interior design", "outside_spaces": "outdoor areas", "dual_environment_benefits": "combined settings", "passenger_activities": "waiting behaviors", "transportation_types": "transit vehicles", "sheltered_elements": "covered areas", "exposed_areas": "open sections", "waiting_behaviors": "passenger activities", "indoor_facilities": "inside services", "platform_features": "transit platform elements", "transit_routines": "transportation procedures", # 專門場所元素 "seating_arrangement": "spectator seating", "playing_surface": "athletic field", "sporting_activities": "sports events", "spectator_facilities": "viewer accommodations", "competition_space": "sports arena", "sports_events": "athletic competitions", "viewing_areas": "audience sections", "field_elements": "field markings and equipment", "game_activities": "competitive play", "construction_equipment": "building machinery", "building_materials": "construction supplies", "construction_activities": "building work", "work_elements": "construction tools", "structural_components": "building structures", "site_equipment": "construction gear", "raw_materials": "building supplies", "construction_process": "building phases", "medical_elements": "healthcare equipment", "clinical_activities": "medical procedures", "facility_design": "healthcare layout", "healthcare_features": "medical facilities", "patient_interactions": "care activities", "equipment_types": "medical devices", "care_procedures": "health services", "treatment_spaces": "clinical areas", "educational_furniture": "learning furniture", "learning_activities": "educational practices", "instructional_design": "teaching layout", "classroom_elements": "school equipment", "teaching_methods": "educational approaches", "student_engagement": "learning participation", "learning_spaces": "educational areas", "educational_tools": "teaching resources", "knowledge_transfer": "learning exchanges" } # 將統計的資訊形成的替換內容合併到默認替換中 default_replacements.update(statistics_based_replacements) # Add Places365-specific template variables places365_scene_context = "" places365_atmosphere = "" if places365_info and places365_info.get('confidence', 0) > 0.35: scene_label = places365_info.get('scene_label', '').replace('_', ' ') attributes = places365_info.get('attributes', []) if scene_label and scene_label != scene_type: places365_scene_context = f"characteristic of a {scene_label}" if 'natural_lighting' in attributes: places365_atmosphere = "with natural illumination" elif 'artificial_lighting' in attributes: places365_atmosphere = "under artificial lighting" # Update default_replacements with Places365 context if places365_scene_context: default_replacements["places365_context"] = places365_scene_context else: default_replacements["places365_context"] = "" if places365_atmosphere: default_replacements["places365_atmosphere"] = places365_atmosphere else: default_replacements["places365_atmosphere"] = "" # For each placeholder, try to fill with appropriate content for placeholder in placeholders: if placeholder in fillers: # Get random filler for this placeholder options = fillers[placeholder] if options: # Select 1-3 items from the options list num_items = min(len(options), random.randint(1, 3)) selected_items = random.sample(options, num_items) # Create a formatted list if len(selected_items) == 1: replacement = selected_items[0] elif len(selected_items) == 2: replacement = f"{selected_items[0]} and {selected_items[1]}" else: replacement = ", ".join(selected_items[:-1]) + f", and {selected_items[-1]}" # Replace the placeholder filled_template = filled_template.replace(f"{{{placeholder}}}", replacement) else: # Try to fill with scene-specific logic replacement = self._generate_placeholder_content(placeholder, detected_objects, scene_type) if replacement: filled_template = filled_template.replace(f"{{{placeholder}}}", replacement) elif placeholder in default_replacements: # Use default replacement if available filled_template = filled_template.replace(f"{{{placeholder}}}", default_replacements[placeholder]) else: # Last resort default filled_template = filled_template.replace(f"{{{placeholder}}}", "various items") return filled_template def _generate_placeholder_content(self, placeholder: str, detected_objects: List[Dict], scene_type: str) -> str: """ Generate content for a template placeholder based on scene-specific logic. Args: placeholder: Template placeholder detected_objects: List of detected objects scene_type: Identified scene type Returns: str: Content for the placeholder """ # Handle different types of placeholders with custom logic if placeholder == "furniture": # Extract furniture items furniture_ids = [56, 57, 58, 59, 60, 61] # Example furniture IDs furniture_objects = [obj for obj in detected_objects if obj["class_id"] in furniture_ids] if furniture_objects: furniture_names = [obj["class_name"] for obj in furniture_objects[:3]] return ", ".join(set(furniture_names)) return "various furniture items" elif placeholder == "electronics": # Extract electronic items electronics_ids = [62, 63, 64, 65, 66, 67, 68, 69, 70] # Example electronics IDs electronics_objects = [obj for obj in detected_objects if obj["class_id"] in electronics_ids] if electronics_objects: electronics_names = [obj["class_name"] for obj in electronics_objects[:3]] return ", ".join(set(electronics_names)) return "electronic devices" elif placeholder == "people_count": # Count people people_count = len([obj for obj in detected_objects if obj["class_id"] == 0]) if people_count == 0: return "no people" elif people_count == 1: return "one person" elif people_count < 5: return f"{people_count} people" else: return "several people" elif placeholder == "seating": # Extract seating items seating_ids = [56, 57] # chair, sofa seating_objects = [obj for obj in detected_objects if obj["class_id"] in seating_ids] if seating_objects: seating_names = [obj["class_name"] for obj in seating_objects[:2]] return ", ".join(set(seating_names)) return "seating arrangements" # Default case - empty string return "" def _generate_basic_details(self, scene_type: str, detected_objects: List[Dict]) -> str: """ Generate basic details when templates aren't available. Args: scene_type: Identified scene type detected_objects: List of detected objects Returns: str: Basic scene details """ # Handle specific scene types with custom logic if scene_type == "living_room": tv_objs = [obj for obj in detected_objects if obj["class_id"] == 62] # TV sofa_objs = [obj for obj in detected_objects if obj["class_id"] == 57] # Sofa if tv_objs and sofa_objs: tv_region = tv_objs[0]["region"] sofa_region = sofa_objs[0]["region"] arrangement = f"The TV is in the {tv_region.replace('_', ' ')} of the image, " arrangement += f"while the sofa is in the {sofa_region.replace('_', ' ')}. " return f"{arrangement}This appears to be a space designed for relaxation and entertainment." elif scene_type == "bedroom": bed_objs = [obj for obj in detected_objects if obj["class_id"] == 59] # Bed if bed_objs: bed_region = bed_objs[0]["region"] extra_items = [] for obj in detected_objects: if obj["class_id"] == 74: # Clock extra_items.append("clock") elif obj["class_id"] == 73: # Book extra_items.append("book") extras = "" if extra_items: extras = f" There is also a {' and a '.join(extra_items)} visible." return f"The bed is located in the {bed_region.replace('_', ' ')} of the image.{extras}" elif scene_type in ["dining_area", "kitchen"]: # Count food and dining-related items food_items = [] for obj in detected_objects: if obj["class_id"] in [39, 41, 42, 43, 44, 45]: # Kitchen items food_items.append(obj["class_name"]) food_str = "" if food_items: unique_items = list(set(food_items)) if len(unique_items) <= 3: food_str = f" with {', '.join(unique_items)}" else: food_str = f" with {', '.join(unique_items[:3])} and other items" return f"{food_str}." elif scene_type == "city_street": # Count people and vehicles people_count = len([obj for obj in detected_objects if obj["class_id"] == 0]) vehicle_count = len([obj for obj in detected_objects if obj["class_id"] in [1, 2, 3, 5, 7]]) # Bicycle, car, motorbike, bus, truck traffic_desc = "" if people_count > 0 and vehicle_count > 0: traffic_desc = f" with {people_count} {'people' if people_count > 1 else 'person'} and " traffic_desc += f"{vehicle_count} {'vehicles' if vehicle_count > 1 else 'vehicle'}" elif people_count > 0: traffic_desc = f" with {people_count} {'people' if people_count > 1 else 'person'}" elif vehicle_count > 0: traffic_desc = f" with {vehicle_count} {'vehicles' if vehicle_count > 1 else 'vehicle'}" return f"{traffic_desc}." # Handle more specialized scenes elif scene_type == "asian_commercial_street": # Look for key urban elements people_count = len([obj for obj in detected_objects if obj["class_id"] == 0]) vehicle_count = len([obj for obj in detected_objects if obj["class_id"] in [1, 2, 3]]) # Analyze pedestrian distribution people_positions = [] for obj in detected_objects: if obj["class_id"] == 0: # Person people_positions.append(obj["normalized_center"]) # Check if people are distributed along a line (indicating a walking path) structured_path = False if len(people_positions) >= 3: # Simplified check - see if y-coordinates are similar for multiple people y_coords = [pos[1] for pos in people_positions] y_mean = sum(y_coords) / len(y_coords) y_variance = sum((y - y_mean)**2 for y in y_coords) / len(y_coords) if y_variance < 0.05: # Low variance indicates linear arrangement structured_path = True street_desc = "A commercial street with " if people_count > 0: street_desc += f"{people_count} {'pedestrians' if people_count > 1 else 'pedestrian'}" if vehicle_count > 0: street_desc += f" and {vehicle_count} {'vehicles' if vehicle_count > 1 else 'vehicle'}" elif vehicle_count > 0: street_desc += f"{vehicle_count} {'vehicles' if vehicle_count > 1 else 'vehicle'}" else: street_desc += "various commercial elements" if structured_path: street_desc += ". The pedestrians appear to be following a defined walking path" # Add cultural elements street_desc += ". The signage and architectural elements suggest an Asian urban setting." return street_desc # Default general description return "The scene contains various elements characteristic of this environment." def _detect_viewpoint(self, detected_objects: List[Dict]) -> str: """ 改進視角檢測,特別加強對空中俯視視角的識別。 Args: detected_objects: 檢測到的物體列表 Returns: str: 檢測到的視角類型 """ if not detected_objects: return "eye_level" # default # extract space and size top_region_count = 0 bottom_region_count = 0 total_objects = len(detected_objects) # 追蹤大小分布以檢測空中視角 sizes = [] # 垂直大小比例用於低角度檢測 height_width_ratios = [] # 用於檢測規則圖案的變數 people_positions = [] crosswalk_pattern_detected = False for obj in detected_objects: # 計算頂部or底部區域中的物體 region = obj["region"] if "top" in region: top_region_count += 1 elif "bottom" in region: bottom_region_count += 1 # 計算標準化大小(Area) if "normalized_area" in obj: sizes.append(obj["normalized_area"]) # 計算高度or寬度比例 if "normalized_size" in obj: width, height = obj["normalized_size"] if width > 0: height_width_ratios.append(height / width) # 收集人的位置 if obj["class_id"] == 0: # 人 if "normalized_center" in obj: people_positions.append(obj["normalized_center"]) # 專門為斑馬線的十字路口添加檢測邏輯 # 檢查是否有明顯的垂直和水平行人分布 people_objs = [obj for obj in detected_objects if obj["class_id"] == 0] # 人 if len(people_objs) >= 8: # 需要足夠多的人才能形成十字路口模式 # 檢查是否有斑馬線模式 - 新增功能 if len(people_positions) >= 4: # 對位置進行聚類分析,尋找線性分布 x_coords = [pos[0] for pos in people_positions] y_coords = [pos[1] for pos in people_positions] # 計算 x 和 y 坐標的變異數和範圍 x_variance = np.var(x_coords) if len(x_coords) > 1 else 0 y_variance = np.var(y_coords) if len(y_coords) > 1 else 0 x_range = max(x_coords) - min(x_coords) y_range = max(y_coords) - min(y_coords) # 嘗試檢測十字形分布 # 如果 x 和 y 方向都有較大範圍,且範圍相似,就有可能是十字路口 if x_range > 0.5 and y_range > 0.5 and 0.7 < (x_range / y_range) < 1.3: # 計算到中心點的距離 center_x = np.mean(x_coords) center_y = np.mean(y_coords) # 將點映射到十字架的軸上(水平和垂直) x_axis_distance = [abs(x - center_x) for x in x_coords] y_axis_distance = [abs(y - center_y) for y in y_coords] # 點應該接近軸線(水平或垂直) # 對於每個點,檢查它是否接近水平或垂直軸線 close_to_axis_count = 0 for i in range(len(x_coords)): if x_axis_distance[i] < 0.1 or y_axis_distance[i] < 0.1: close_to_axis_count += 1 # 如果足夠多的點接近軸線,認為是十字路口 if close_to_axis_count >= len(x_coords) * 0.6: crosswalk_pattern_detected = True # 如果沒有檢測到十字形,嘗試檢測線性聚類分布 if not crosswalk_pattern_detected: # 檢查 x 和 y 方向的聚類 x_clusters = self._detect_linear_clusters(x_coords) y_clusters = self._detect_linear_clusters(y_coords) # 如果在 x 和 y 方向上都有多個聚類,可能是交叉的斑馬線 if len(x_clusters) >= 2 and len(y_clusters) >= 2: crosswalk_pattern_detected = True # 檢測斑馬線模式 - 優先判斷 if crosswalk_pattern_detected: return "aerial" # 檢測行人分布情況 if len(people_objs) >= 10: people_region_counts = {} for obj in people_objs: region = obj["region"] if region not in people_region_counts: people_region_counts[region] = 0 people_region_counts[region] += 1 # 計算不同區域中的行人數量 region_count = len([r for r, c in people_region_counts.items() if c >= 2]) # 如果行人分布在多個區域中,可能是空中視角 if region_count >= 4: # 檢查行人分布的模式 # 特別是檢查不同區域中行人數量的差異 region_counts = list(people_region_counts.values()) region_counts_variance = np.var(region_counts) if len(region_counts) > 1 else 0 region_counts_mean = np.mean(region_counts) if region_counts else 0 # 如果行人分布較為均勻(變異係數小),可能是空中視角 if region_counts_mean > 0: variation_coefficient = region_counts_variance / region_counts_mean if variation_coefficient < 0.5: return "aerial" # 計算指標 top_ratio = top_region_count / total_objects if total_objects > 0 else 0 bottom_ratio = bottom_region_count / total_objects if total_objects > 0 else 0 # 大小變異數(標準化) size_variance = 0 if sizes: mean_size = sum(sizes) / len(sizes) size_variance = sum((s - mean_size) ** 2 for s in sizes) / len(sizes) size_variance = size_variance / (mean_size ** 2) # 標準化 # 平均高度/寬度比例 avg_height_width_ratio = sum(height_width_ratios) / len(height_width_ratios) if height_width_ratios else 1.0 # 空中視角:低大小差異,物體均勻分布,底部很少或沒有物體 if (size_variance < self.viewpoint_params["aerial_size_variance_threshold"] and bottom_ratio < 0.3 and top_ratio > self.viewpoint_params["aerial_threshold"]): return "aerial" # 低角度視角:物體傾向於比寬高,頂部較多物體 elif (avg_height_width_ratio > self.viewpoint_params["vertical_size_ratio_threshold"] and top_ratio > self.viewpoint_params["low_angle_threshold"]): return "low_angle" # 高視角:底部較多物體,頂部較少 elif (bottom_ratio > self.viewpoint_params["elevated_threshold"] and top_ratio < self.viewpoint_params["elevated_top_threshold"]): return "elevated" # 默認:平視角 return "eye_level" def _detect_linear_clusters(self, coords, threshold=0.05): """ 檢測坐標中的線性聚類 Args: coords: 一維坐標列表 threshold: 聚類閾值 Returns: list: 聚類列表 """ if not coords: return [] # 排序坐標 sorted_coords = sorted(coords) clusters = [] current_cluster = [sorted_coords[0]] for i in range(1, len(sorted_coords)): # 如果當前坐標與前一個接近,添加到當前聚類 if sorted_coords[i] - sorted_coords[i-1] < threshold: current_cluster.append(sorted_coords[i]) else: # 否則開始新的聚類 if len(current_cluster) >= 2: # 至少需要2個點形成聚類 clusters.append(current_cluster) current_cluster = [sorted_coords[i]] # 添加最後一個cluster if len(current_cluster) >= 2: clusters.append(current_cluster) return clusters def _detect_cultural_context(self, scene_type: str, detected_objects: List[Dict]) -> Optional[str]: """ Detect the likely cultural context of the scene. Args: scene_type: Identified scene type detected_objects: List of detected objects Returns: Optional[str]: Detected cultural context (asian, european, etc.) or None """ # Scene types with explicit cultural contexts cultural_scene_mapping = { "asian_commercial_street": "asian", "asian_night_market": "asian", "asian_temple_area": "asian", "european_plaza": "european" } # Check if scene type directly indicates cultural context if scene_type in cultural_scene_mapping: return cultural_scene_mapping[scene_type] # No specific cultural context detected return None def _generate_cultural_elements(self, cultural_context: str) -> str: """ Generate description of cultural elements for the detected context. Args: cultural_context: Detected cultural context Returns: str: Description of cultural elements """ # Get template for this cultural context cultural_templates = self.templates.get("cultural_templates", {}) if cultural_context in cultural_templates: template = cultural_templates[cultural_context] elements = template.get("elements", []) if elements: # Select 1-2 random elements num_elements = min(len(elements), random.randint(1, 2)) selected_elements = random.sample(elements, num_elements) # Format elements list elements_text = " and ".join(selected_elements) if num_elements == 2 else selected_elements[0] # Fill template return template.get("description", "").format(elements=elements_text) return "" def _optimize_object_description(self, description: str) -> str: """ 優化物品描述,避免重複列舉相同物品 """ import re # 處理床鋪重複描述 if "bed in the room" in description: description = description.replace("a bed in the room", "a bed") # 處理重複的物品列表 object_lists = re.findall(r'with ([^\.]+?)(?:\.|\band\b)', description) for obj_list in object_lists: # 計算每個物品出現次數 items = re.findall(r'([a-zA-Z\s]+)(?:,|\band\b|$)', obj_list) item_counts = {} for item in items: item = item.strip() if item and item not in ["and", "with"]: if item not in item_counts: item_counts[item] = 0 item_counts[item] += 1 # 生成優化後的物品列表 if item_counts: new_items = [] for item, count in item_counts.items(): if count > 1: new_items.append(f"{count} {item}s") else: new_items.append(item) # 格式化新列表 if len(new_items) == 1: new_list = new_items[0] elif len(new_items) == 2: new_list = f"{new_items[0]} and {new_items[1]}" else: new_list = ", ".join(new_items[:-1]) + f", and {new_items[-1]}" # 替換原始列表 description = description.replace(obj_list, new_list) return description def _describe_functional_zones(self, functional_zones: Dict) -> str: """ 生成場景功能區域的描述,優化處理行人區域、人數統計和物品重複問題。 Args: functional_zones: 識別出的功能區域字典 Returns: str: 功能區域描述 """ if not functional_zones: return "" # 處理不同類型的 functional_zones 參數 if isinstance(functional_zones, list): # 如果是列表,轉換為字典格式 zones_dict = {} for i, zone in enumerate(functional_zones): if isinstance(zone, dict) and 'name' in zone: zone_name = zone['name'] else: zone_name = f"zone_{i}" zones_dict[zone_name] = zone if isinstance(zone, dict) else {"description": str(zone)} functional_zones = zones_dict elif not isinstance(functional_zones, dict): return "" # 計算場景中的總人數 total_people_count = 0 people_by_zone = {} # 計算每個區域的人數並累計總人數 for zone_name, zone_info in functional_zones.items(): if "objects" in zone_info: zone_people_count = zone_info["objects"].count("person") people_by_zone[zone_name] = zone_people_count total_people_count += zone_people_count # 分類區域為行人區域和其他區域 pedestrian_zones = [] other_zones = [] for zone_name, zone_info in functional_zones.items(): # 檢查是否是行人相關區域 if any(keyword in zone_name.lower() for keyword in ["pedestrian", "crossing", "people"]): pedestrian_zones.append((zone_name, zone_info)) else: other_zones.append((zone_name, zone_info)) # 獲取最重要的行人區域和其他區域 main_pedestrian_zones = sorted(pedestrian_zones, key=lambda z: people_by_zone.get(z[0], 0), reverse=True)[:1] # 最多1個主要行人區域 top_other_zones = sorted(other_zones, key=lambda z: len(z[1].get("objects", [])), reverse=True)[:2] # 最多2個其他區域 # 合併區域 top_zones = main_pedestrian_zones + top_other_zones if not top_zones: return "" # 生成匯總描述 summary = "" max_mentioned_people = 0 # track已經提到的最大人數 # 如果總人數顯著且還沒在主描述中提到,添加總人數描述 if total_people_count > 5: summary = f"The scene contains a significant number of pedestrians ({total_people_count} people). " max_mentioned_people = total_people_count # update已提到的最大人數 # 處理每個區域的描述,確保人數信息的一致性 processed_zones = [] for zone_name, zone_info in top_zones: zone_desc = zone_info.get("description", "a functional zone") zone_people_count = people_by_zone.get(zone_name, 0) # 檢查描述中是否包含人數資訊 contains_people_info = "with" in zone_desc and ("person" in zone_desc.lower() or "people" in zone_desc.lower()) # 如果描述包含人數信息,且人數較小(小於已提到的最大人數),則修改描述 if contains_people_info and zone_people_count < max_mentioned_people: parts = zone_desc.split("with") if len(parts) > 1: # 移除人數部分 zone_desc = parts[0].strip() + " area" processed_zones.append((zone_name, {"description": zone_desc})) # 根據處理後的區域數量生成最終描述 final_desc = "" if len(processed_zones) == 1: _, zone_info = processed_zones[0] zone_desc = zone_info["description"] final_desc = summary + f"The scene includes {zone_desc}." elif len(processed_zones) == 2: _, zone1_info = processed_zones[0] _, zone2_info = processed_zones[1] zone1_desc = zone1_info["description"] zone2_desc = zone2_info["description"] final_desc = summary + f"The scene is divided into two main areas: {zone1_desc} and {zone2_desc}." else: zones_desc = ["The scene contains multiple functional areas including"] zone_descriptions = [z[1]["description"] for z in processed_zones] # 格式化最終的多區域描述 if len(zone_descriptions) == 3: formatted_desc = f"{zone_descriptions[0]}, {zone_descriptions[1]}, and {zone_descriptions[2]}" else: formatted_desc = ", ".join(zone_descriptions[:-1]) + f", and {zone_descriptions[-1]}" final_desc = summary + f"{zones_desc[0]} {formatted_desc}." return self._optimize_object_description(final_desc)