File size: 26,550 Bytes
1004b9c 535bb41 1004b9c 535bb41 1004b9c a0f90fe f0a3c4e 535bb41 5baa01f 4286e7c 1004b9c a0f90fe 38f85af a0f90fe a561bb3 a0f90fe edc3338 1691d49 9201579 1004b9c a0f90fe 1004b9c 38f85af 1004b9c a0f90fe 1004b9c a0f90fe 1004b9c a0f90fe 1004b9c a0f90fe 1004b9c a0f90fe 1004b9c 9201579 1004b9c a0f90fe 1004b9c a0f90fe 95f1cdb 1004b9c a0f90fe 95f1cdb 1004b9c a0f90fe 95f1cdb 1004b9c a0f90fe 95f1cdb 1004b9c 1691d49 a0f90fe 95f1cdb 1004b9c a0f90fe 1004b9c a0f90fe 1004b9c 9201579 1004b9c 51cbe57 4286e7c f22fda0 4286e7c 5baa01f 51cbe57 1eab316 51cbe57 1004b9c f22fda0 1004b9c f22fda0 1004b9c 085bc4b 1004b9c 085bc4b 1004b9c 085bc4b 1004b9c 085bc4b 1004b9c 085bc4b 1004b9c 4286e7c a0f90fe 1004b9c 1eab316 1004b9c 38f85af 3f7d166 1004b9c a0f90fe 1004b9c 535bb41 1004b9c a0f90fe 1004b9c 4286e7c 1004b9c 9201579 1004b9c 4286e7c 1004b9c f0a3c4e 1004b9c 3527d6e a0f90fe 38f85af a0f90fe 38f85af a0f90fe 1004b9c 99eb44f 48521ac 99eb44f 48521ac 1004b9c 95f1cdb 99eb44f 98f9bad 1004b9c 99eb44f 1004b9c 95f1cdb 535bb41 1004b9c 95f1cdb 535bb41 1004b9c 95f1cdb 535bb41 1004b9c 95f1cdb 535bb41 1004b9c 825aa16 973a89e 825aa16 973a89e c9fc375 825aa16 1004b9c 51cbe57 1004b9c 98f9bad 1004b9c acaea79 1004b9c f0a3c4e 95f1cdb 1004b9c 3527d6e 1004b9c 95f1cdb 1004b9c acaea79 1004b9c acaea79 1004b9c 825aa16 a0f90fe acaea79 a0f90fe acaea79 1004b9c a0f90fe 1004b9c 9201579 a0f90fe 1004b9c 535bb41 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 |
import gradio as gr
import asyncio
import json
import html
import os
import uuid
import sqlite3
import datetime
import difflib
import logging
import pandas as pd
from tiktoken import get_encoding
from openai import AzureOpenAI
import httpx
import re
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler('aiapp.log'),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
# Clear proxy environment variables to avoid interference
os.environ.pop("HTTP_PROXY", None)
os.environ.pop("HTTPS_PROXY", None)
# ConversationMemory class
class ConversationMemory:
def __init__(self, db_path="conversation.db"):
self.conn = sqlite3.connect(db_path)
self.create_table()
self.tokenizer = get_encoding("cl100k_base")
logger.info(f"Initialized ConversationMemory with db_path: {db_path}")
def create_table(self):
self.conn.execute("""
CREATE TABLE IF NOT EXISTS conversation_chunks (
chunk_id TEXT PRIMARY KEY,
text TEXT,
role TEXT,
timestamp DATETIME,
intent TEXT,
token_count INTEGER,
embedding BLOB
)
""")
self.conn.commit()
logger.info("Created conversation table")
def add_chunk(self, text, role, intent="general"):
chunk_id = str(uuid.uuid4())
tokens = self.tokenizer.encode(text)
token_count = len(tokens)
timestamp = datetime.datetime.now().isoformat()
self.conn.execute("""
INSERT INTO conversation_chunks (chunk_id, text, role, timestamp, intent, token_count)
VALUES (?, ?, ?, ?, ?, ?)
""", (chunk_id, text, role, timestamp, intent, token_count))
self.conn.commit()
logger.info(f"Added chunk: {chunk_id}, role: {role}, intent: {intent}, token_count: {token_count}")
return chunk_id
def get_chunk(self, chunk_id):
cursor = self.conn.execute("SELECT * FROM conversation_chunks WHERE chunk_id = ?", (chunk_id,))
row = cursor.fetchone()
if row:
chunk = {
"chunk_id": row[0], "text": row[1], "role": row[2],
"timestamp": row[3], "intent": row[4], "token_count": row[5]
}
logger.info(f"Retrieved chunk: {chunk_id}")
return chunk
logger.warning(f"Chunk not found: {chunk_id}")
return None
def update_chunk(self, chunk_id, text):
tokens = self.tokenizer.encode(text)
token_count = len(tokens)
self.conn.execute("""
UPDATE conversation_chunks SET text = ?, token_count = ?
WHERE chunk_id = ?
""", (text, token_count, chunk_id))
self.conn.commit()
logger.info(f"Updated chunk: {chunk_id}, new token_count: {token_count}")
def get_recent_chunks(self, limit=10):
cursor = self.conn.execute("SELECT * FROM conversation_chunks ORDER BY timestamp DESC LIMIT ?", (limit,))
chunks = [{"chunk_id": row[0], "text": row[1], "role": row[2], "timestamp": row[3], "intent": row[4], "token_count": row[5]} for row in cursor]
logger.info(f"Retrieved {len(chunks)} recent chunks")
return chunks
# TextEditor class
class TextEditor:
def __init__(self, memory):
self.memory = memory
self.clipboard = ""
logger.info("Initialized TextEditor")
def cut(self, chunk_id, start, end):
chunk = self.memory.get_chunk(chunk_id)
if chunk:
self.clipboard = chunk['text'][start:end]
chunk['text'] = chunk['text'][:start] + chunk['text'][end:]
self.memory.update_chunk(chunk_id, chunk['text'])
logger.info(f"Cut text from chunk: {chunk_id}, start: {start}, end: {end}, clipboard: {self.clipboard}")
return chunk['text']
logger.warning(f"Failed to cut text, chunk not found: {chunk_id}")
return "Error: Chunk not found"
def copy(self, chunk_id, start, end):
chunk = self.memory.get_chunk(chunk_id)
if chunk:
self.clipboard = chunk['text'][start:end]
logger.info(f"Copied text from chunk: {chunk_id}, start: {start}, end: {end}, clipboard: {self.clipboard}")
return self.clipboard
logger.warning(f"Failed to copy text, chunk not found: {chunk_id}")
return "Error: Chunk not found"
def paste(self, chunk_id, position):
chunk = self.memory.get_chunk(chunk_id)
if chunk:
chunk['text'] = chunk['text'][:position] + self.clipboard + chunk['text'][position:]
self.memory.update_chunk(chunk_id, chunk['text'])
logger.info(f"Pasted text to chunk: {chunk_id}, position: {position}, clipboard: {self.clipboard}")
return chunk['text']
logger.warning(f"Failed to paste text, chunk not found: {chunk_id}")
return "Error: Chunk not found"
def add_prefix(self, chunk_id, prefix):
chunk = self.memory.get_chunk(chunk_id)
if chunk:
chunk['text'] = prefix + chunk['text']
self.memory.update_chunk(chunk_id, chunk['text'])
logger.info(f"Added prefix to chunk: {chunk_id}, prefix: {prefix}")
return chunk['text']
logger.warning(f"Failed to add prefix, chunk not found: {chunk_id}")
return "Error: Chunk not found"
def add_suffix(self, chunk_id, suffix):
chunk = self.memory.get_chunk(chunk_id)
if chunk:
chunk['text'] = chunk['text'] + suffix
self.memory.update_chunk(chunk_id, chunk['text'])
logger.info(f"Added suffix to chunk: {chunk_id}, suffix: {suffix}")
return chunk['text']
logger.warning(f"Failed to add suffix, chunk not found: {chunk_id}")
return "Error: Chunk not found"
def diff(self, chunk_id, original_text):
chunk = self.memory.get_chunk(chunk_id)
if chunk:
differ = difflib.Differ()
diff = list(differ.compare(original_text.splitlines(), chunk['text'].splitlines()))
logger.info(f"Generated diff for chunk: {chunk_id}")
return '\n'.join(diff)
logger.warning(f"Failed to generate diff, chunk not found: {chunk_id}")
return ""
# OpenAIApi class
class OpenAIApi:
def __init__(self, preprompt="", endpoint="https://T-App-GPT4o.openai.azure.com/", model="gpt-4o", api_key=None):
# Validate endpoint format
if not re.match(r"^https://[a-zA-Z0-9-]+\.openai\.azure\.com/?$", endpoint):
logger.warning(f"Endpoint format may be incorrect: {endpoint}. Expected format: https://<resource-name>.openai.azure.com/")
# Use a minimal httpx.Client to avoid proxies parameter
http_client = httpx.Client()
try:
self.client = AzureOpenAI(
azure_endpoint=endpoint.rstrip('/'), # Ensure no trailing slash
api_key=api_key or os.getenv("AZURE_OPENAI_API_KEY"),
api_version="2024-02-15-preview",
http_client=http_client
)
except Exception as e:
logger.error(f"Failed to initialize AzureOpenAI client: {str(e)}")
raise
self.model = model
self.preprompt = preprompt
self.memory = ConversationMemory()
self.editor = TextEditor(self.memory)
logger.info(f"Initialized OpenAIApi with endpoint: {endpoint}, model: {model}, api_version: 2024-02-15-preview")
self.functions = [
{
"type": "function",
"function": {
"name": "cut_text",
"description": "Cut text from a conversation chunk.",
"parameters": {
"type": "object",
"properties": {
"chunk_id": {"type": "string", "description": "ID of the conversation chunk"},
"start": {"type": "integer", "description": "Start index"},
"end": {"type": "integer", "description": "End index"}
},
"required": ["chunk_id", "start", "end"]
}
}
},
{
"type": "function",
"function": {
"name": "copy_text",
"description": "Copy text from a conversation chunk to clipboard.",
"parameters": {
"type": "object",
"properties": {
"chunk_id": {"type": "string", "description": "ID of the conversation chunk"},
"start": {"type": "integer", "description": "Start index"},
"end": {"type": "integer", "description": "End index"}
},
"required": ["chunk_id", "start", "end"]
}
}
},
{
"type": "function",
"function": {
"name": "paste_text",
"description": "Paste clipboard content into a conversation chunk.",
"parameters": {
"type": "object",
"properties": {
"chunk_id": {"type": "string", "description": "ID of the conversation chunk"},
"position": {"type": "integer", "description": "Position to paste"}
},
"required": ["chunk_id", "position"]
}
}
},
{
"type": "function",
"function": {
"name": "add_prefix",
"description": "Add a prefix to a conversation chunk.",
"parameters": {
"type": "object",
"properties": {
"chunk_id": {"type": "string", "description": "ID of the conversation chunk"},
"prefix": {"type": "string", "description": "Prefix to add"}
},
"required": ["chunk_id", "prefix"]
}
}
},
{
"type": "function",
"function": {
"name": "add_suffix",
"description": "Add a suffix to a conversation chunk.",
"parameters": {
"type": "object",
"properties": {
"chunk_id": {"type": "string", "description": "ID of the conversation chunk"},
"suffix": {"type": "string", "description": "Suffix to add"}
},
"required": ["chunk_id", "suffix"]
}
}
}
]
async def fetch_response(self, raw_prompt, continue_response=False):
sanitized_prompt = html.escape(raw_prompt.strip())
chunk_id = self.memory.add_chunk(sanitized_prompt, "user")
messages = []
if self.preprompt:
messages.append({"role": "system", "content": self.preprompt})
context = self.memory.get_recent_chunks(limit=5)
messages.extend({"role": c["role"], "content": c["text"]} for c in context)
messages.append({"role": "user", "content": sanitized_prompt})
logger.info(f"Sending request to model: {self.model}, endpoint: {self.client._base_url}, messages: {json.dumps(messages, ensure_ascii=False)}")
try:
# Synchronous call to create stream
response = self.client.chat.completions.create(
model=self.model,
messages=messages,
temperature=0.5,
max_tokens=4000,
top_p=1.0,
frequency_penalty=0,
presence_penalty=0,
tools=self.functions,
stream=True
)
def process_stream(sync_stream):
full_response = ""
tool_calls = []
for chunk in sync_stream:
logger.debug(f"Received chunk: {chunk}")
if chunk.choices and chunk.choices[0].delta.content:
full_response += chunk.choices[0].delta.content
if chunk.choices and chunk.choices[0].delta.tool_calls:
tool_calls.extend(chunk.choices[0].delta.tool_calls)
return full_response, tool_calls
# Run synchronous stream processing in a separate thread
logger.debug("Processing stream in separate thread")
full_response, tool_calls = await asyncio.to_thread(process_stream, response)
logger.debug("Stream processing completed")
response_chunk_id = self.memory.add_chunk(full_response, "assistant")
logger.info(f"Received response for chunk: {response_chunk_id}, length: {len(full_response)}")
for tool_call in tool_calls:
if tool_call and hasattr(tool_call, 'function'):
func_name = tool_call.function.name
args = json.loads(tool_call.function.arguments)
logger.info(f"Processing tool call: {func_name}, args: {args}")
if func_name == "cut_text":
result = self.editor.cut(args["chunk_id"], args["start"], args["end"])
self.memory.add_chunk(f"Cut result: {result}", "system")
elif func_name == "copy_text":
result = self.editor.copy(args["chunk_id"], args["start"], args["end"])
self.memory.add_chunk(f"Copy result: {result}", "system")
elif func_name == "paste_text":
result = self.editor.paste(args["chunk_id"], args["position"])
self.memory.add_chunk(f"Paste result: {result}", "system")
elif func_name == "add_prefix":
result = self.editor.add_prefix(args["chunk_id"], args["prefix"])
self.memory.add_chunk(f"Prefix result: {result}", "system")
elif func_name == "add_suffix":
result = self.editor.add_suffix(args["chunk_id"], args["suffix"])
self.memory.add_chunk(f"Suffix result: {result}", "system")
continue_flag = len(self.memory.tokenizer.encode(full_response)) >= 4000
return {"content": full_response, "continue": continue_flag, "chunk_id": response_chunk_id}
except Exception as e:
error_msg = f"API Error: {str(e)}"
logger.error(f"API request failed: {error_msg}, endpoint: {self.client._base_url}, model: {self.model}")
self.memory.add_chunk(error_msg, "system")
return {"error": error_msg}
# Gradio UI
async def chat_submit(user_input, chat_history, preprompt):
try:
api = OpenAIApi(preprompt=preprompt, api_key=os.getenv("AZURE_OPENAI_API_KEY"))
response = await api.fetch_response(user_input)
if "error" in response:
chat_history.append({"role": "assistant", "content": f"Error: {response['error']}"})
logger.warning(f"Chat error: {response['error']}")
else:
chat_history.append({"role": "user", "content": user_input})
chat_history.append({"role": "assistant", "content": response["content"]})
logger.info("Chat response added to history")
return chat_history, preprompt
except ValueError as e:
error_msg = f"Configuration Error: {str(e)}"
logger.error(error_msg)
chat_history.append({"role": "assistant", "content": error_msg})
return chat_history, preprompt
def get_history():
memory = ConversationMemory()
chunks = memory.get_recent_chunks(limit=10)
# Convert to list of lists for Gradio Dataframe
data = [[chunk["chunk_id"], chunk["text"], chunk["role"], chunk["timestamp"], chunk["intent"], chunk["token_count"]] for chunk in chunks]
logger.info(f"Returning {len(data)} chunks for history: {json.dumps(data, ensure_ascii=False)}")
return data
async def async_get_history():
await asyncio.sleep(0.2) # 200ms delay for debounce
return get_history()
def get_logs():
try:
with open("aiapp.log", "r") as f:
logs = f.read()
logger.info("Retrieved logs from aiapp.log")
return logs
except Exception as e:
logger.error(f"Failed to read logs: {str(e)}")
return f"Error reading logs: {str(e)}"
def select_chunk(evt: gr.SelectData):
logger.info(f"Selected chunk raw data: {evt.value}")
# Handle single chunk_id or list of row data
chunk_id = evt.value if isinstance(evt.value, str) else (evt.value[0] if isinstance(evt.value, list) and len(evt.value) > 0 else "")
if not chunk_id:
logger.warning(f"Invalid selection data: No chunk_id found in {evt.value}")
return "", "Error: No chunk_id selected"
try:
uuid.UUID(chunk_id, version=4) # Validate chunk_id
memory = ConversationMemory()
chunk = memory.get_chunk(chunk_id)
if chunk:
logger.info(f"Selected chunk: {chunk_id}")
return chunk_id, chunk["text"]
logger.warning(f"Chunk not found for chunk_id: {chunk_id}")
return "", "Error: Chunk not found"
except ValueError:
logger.warning(f"Invalid chunk_id selected: {chunk_id}")
return "", "Error: Invalid chunk_id selected"
async def edit_cut(chunk_id, start, end):
logger.info(f"edit_cut called with chunk_id: {chunk_id}, start: {start}, end: {end}")
try:
# Validate chunk_id as a UUID
uuid.UUID(chunk_id, version=4)
except ValueError:
logger.warning(f"Invalid chunk_id: {chunk_id} is not a valid UUID")
return "Error: Invalid chunk_id", "Invalid chunk_id selected"
api = OpenAIApi(api_key=os.getenv("AZURE_OPENAI_API_KEY"))
result = api.editor.cut(chunk_id, int(start), int(end))
diff = api.editor.diff(chunk_id, result) if "Error" not in result else ""
return result, diff
async def edit_copy(chunk_id, start, end):
logger.info(f"edit_copy called with chunk_id: {chunk_id}, start: {start}, end: {end}")
try:
uuid.UUID(chunk_id, version=4)
except ValueError:
logger.warning(f"Invalid chunk_id: {chunk_id} is not a valid UUID")
return "Error: Invalid chunk_id", ""
api = OpenAIApi(api_key=os.getenv("AZURE_OPENAI_API_KEY"))
result = api.editor.copy(chunk_id, int(start), int(end))
return result, ""
async def edit_paste(chunk_id, position):
logger.info(f"edit_paste called with chunk_id: {chunk_id}, position: {position}")
try:
uuid.UUID(chunk_id, version=4)
except ValueError:
logger.warning(f"Invalid chunk_id: {chunk_id} is not a valid UUID")
return "Error: Invalid chunk_id", ""
api = OpenAIApi(api_key=os.getenv("AZURE_OPENAI_API_KEY"))
result = api.editor.paste(chunk_id, int(position))
return result, api.editor.diff(chunk_id, result)
async def edit_prefix(chunk_id, prefix):
logger.info(f"edit_prefix called with chunk_id: {chunk_id}, prefix: {prefix}")
try:
uuid.UUID(chunk_id, version=4)
except ValueError:
logger.warning(f"Invalid chunk_id: {chunk_id} is not a valid UUID")
return "Error: Invalid chunk_id", ""
api = OpenAIApi(api_key=os.getenv("AZURE_OPENAI_API_KEY"))
result = api.editor.add_prefix(chunk_id, prefix)
return result, api.editor.diff(chunk_id, result)
async def edit_suffix(chunk_id, suffix):
logger.info(f"edit_suffix called with chunk_id: {chunk_id}, suffix: {suffix}")
try:
uuid.UUID(chunk_id, version=4)
except ValueError:
logger.warning(f"Invalid chunk_id: {chunk_id} is not a valid UUID")
return "Error: Invalid chunk_id", ""
api = OpenAIApi(api_key=os.getenv("AZURE_OPENAI_API_KEY"))
result = api.editor.add_suffix(chunk_id, suffix)
return result, api.editor.diff(chunk_id, result)
async def generate_and_edit(source_text, target_start, target_end, response_prompt):
# Step 1: Generate source paragraph/code
memory = ConversationMemory()
chunk_id = memory.add_chunk(source_text, "user")
logger.info(f"Generated source chunk: {chunk_id}")
# Step 2: Cut out the target text
api = OpenAIApi(api_key=os.getenv("AZURE_OPENAI_API_KEY"))
cut_result = api.editor.cut(chunk_id, target_start, target_end)
logger.info(f"Cut target text from chunk: {chunk_id}, start: {target_start}, end: {target_end}")
# Step 3: Generate response
response = await api.fetch_response(response_prompt)
if "error" in response:
return "Error: Failed to generate response", ""
response_text = response["content"]
# Extract only the response part after "Response for [TARGET]:" if present
response_match = re.search(r"Response for \[TARGET\]:\s*(.+)", response_text, re.DOTALL)
if response_match:
api.editor.clipboard = response_match.group(1).strip()
else:
api.editor.clipboard = response_text.strip() # Fallback to full response if no match
logger.info(f"Generated and set response to clipboard: {api.editor.clipboard}")
# Step 4: Paste response into the target hole
paste_result = api.editor.paste(chunk_id, target_start)
logger.info(f"Pasted response into chunk: {chunk_id}, position: {target_start}")
# Return updated text and diff
diff = api.editor.diff(chunk_id, paste_result) if "Error" not in paste_result else ""
return paste_result, diff
def create_ui():
with gr.Blocks(title="Azure OpenAI Chat & Text Editor") as demo:
gr.Markdown("# Azure OpenAI Chat with Text Editing")
gr.Markdown("**Note**: Using Azure OpenAI endpoint: https://T-App-GPT4o.openai.azure.com/")
with gr.Tab("Chat"):
chatbot = gr.Chatbot(label="Conversation", type="messages")
user_input = gr.Textbox(label="Your Message", placeholder="Type your message or editing command...")
preprompt = gr.Textbox(label="System Prompt", value="You are a helpful assistant with text editing capabilities.")
submit_btn = gr.Button("Send")
submit_btn.click(
fn=chat_submit,
inputs=[user_input, chatbot, preprompt],
outputs=[chatbot, preprompt]
)
with gr.Tab("Conversation History"):
history = gr.Dataframe(
label="Recent Chunks",
headers=["chunk_id", "text", "role", "timestamp", "intent", "token_count"],
datatype=["str", "str", "str", "str", "str", "number"],
interactive=False,
key="history_df"
)
history_btn = gr.Button("Refresh History")
history_btn.click(fn=async_get_history, outputs=history, api_name="refresh_history")
with gr.Tab("Text Editor"):
chunk_id = gr.Textbox(label="Selected Chunk ID", interactive=False)
chunk_text = gr.Textbox(label="Chunk Text", interactive=False)
history.select(fn=select_chunk, outputs=[chunk_id, chunk_text])
with gr.Row():
start = gr.Number(label="Start Index", precision=0)
end = gr.Number(label="End Index", precision=0)
position = gr.Number(label="Paste Position", precision=0)
with gr.Row():
prefix = gr.Textbox(label="Prefix")
suffix = gr.Textbox(label="Suffix")
with gr.Row():
cut_btn = gr.Button("Cut")
copy_btn = gr.Button("Copy")
paste_btn = gr.Button("Paste")
prefix_btn = gr.Button("Add Prefix")
suffix_btn = gr.Button("Add Suffix")
diff_output = gr.Textbox(label="Diff Output", interactive=False)
cut_btn.click(fn=edit_cut, inputs=[chunk_id, start, end], outputs=[chunk_text, diff_output])
copy_btn.click(fn=edit_copy, inputs=[chunk_id, start, end], outputs=[chunk_text, diff_output])
paste_btn.click(fn=edit_paste, inputs=[chunk_id, position], outputs=[chunk_text, diff_output])
prefix_btn.click(fn=edit_prefix, inputs=[chunk_id, prefix], outputs=[chunk_text, diff_output])
suffix_btn.click(fn=edit_suffix, inputs=[chunk_id, suffix], outputs=[chunk_text, diff_output])
with gr.Tab("Advanced Text Manipulation"):
source_text = gr.Textbox(label="Source Text", value="This is a sample paragraph. [TARGET] This is the rest of the text.")
target_start = gr.Number(label="Target Start Index", value=21, precision=0)
target_end = gr.Number(label="Target End Index", value=28, precision=0)
response_prompt = gr.Textbox(label="Response Prompt", value="Generate a response for the target section.")
generate_btn = gr.Button("Generate and Edit")
result_text = gr.Textbox(label="Result Text", interactive=False)
result_diff = gr.Textbox(label="Result Diff", interactive=False)
generate_btn.click(
fn=generate_and_edit,
inputs=[source_text, target_start, target_end, response_prompt],
outputs=[result_text, result_diff]
)
with gr.Tab("Logs"):
logs = gr.Textbox(label="Application Logs", interactive=False)
logs_btn = gr.Button("Refresh Logs")
logs_btn.click(fn=get_logs, outputs=logs)
gr.Markdown(f"Current Time: {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S %Z')}")
logger.info("Created Gradio UI")
return demo
if __name__ == "__main__":
logger.info("Starting application")
demo = create_ui()
demo.launch(server_name="0.0.0.0", server_port=7860) |