File size: 5,623 Bytes
ac3fd77
 
 
 
 
19ffd31
 
 
662515a
ac3fd77
 
 
 
 
 
662515a
19ffd31
ac3fd77
19ffd31
ac3fd77
 
 
662515a
 
 
 
 
 
 
 
0b90bff
 
 
 
 
 
 
662515a
ac3fd77
 
 
662515a
ac3fd77
 
 
 
 
 
 
 
 
 
 
 
 
 
19ffd31
ac3fd77
 
 
 
 
19ffd31
 
ac3fd77
 
 
19ffd31
 
 
 
ac3fd77
 
 
 
 
19ffd31
 
 
662515a
19ffd31
 
 
 
 
 
 
ed4625b
662515a
ed4625b
662515a
 
 
 
 
 
19ffd31
662515a
 
 
 
 
 
 
 
 
ed4625b
662515a
ed4625b
 
662515a
 
 
 
 
 
 
 
31bf755
ed4625b
662515a
ed4625b
 
 
 
662515a
ed4625b
662515a
ed4625b
 
10a152a
31bf755
ed4625b
 
 
 
19ffd31
662515a
 
 
 
 
 
 
 
ed4625b
 
 
 
 
662515a
ed4625b
662515a
ed4625b
 
 
 
 
 
 
 
662515a
 
ed4625b
19ffd31
ed4625b
 
 
662515a
 
19ffd31
ac3fd77
 
19ffd31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import base64
import os
import mimetypes
from google import genai
from google.genai import types
import gradio as gr
import io
from PIL import Image
import tempfile

def save_binary_file(file_name, data):
    f = open(file_name, "wb")
    f.write(data)
    f.close()

def generate_image(prompt, image=None, output_filename="generated_image"):
    # Initialize client with the API key
    client = genai.Client(
        api_key="AIzaSyAQcy3LfrkMy6DqS_8MqftAXu1Bx_ov_E8",
    )

    model = "gemini-2.0-flash-exp-image-generation"
    parts = [types.Part.from_text(text=prompt)]
    
    # If an image is provided, add it to the content
    if image:
        # Convert PIL Image to bytes
        img_byte_arr = io.BytesIO()
        image.save(img_byte_arr, format="PNG")
        img_bytes = img_byte_arr.getvalue()
        # Add the image as a Part with inline_data
        parts.append({
            "inline_data": {
                "mime_type": "image/png",
                "data": img_bytes
            }
        })

    contents = [
        types.Content(
            role="user",
            parts=parts,
        ),
    ]
    generate_content_config = types.GenerateContentConfig(
        temperature=1,
        top_p=0.95,
        top_k=40,
        max_output_tokens=8192,
        response_modalities=[
            "image",
            "text",
        ],
        safety_settings=[
            types.SafetySetting(
                category="HARM_CATEGORY_CIVIC_INTEGRITY",
                threshold="OFF",
            ),
        ],
        response_mime_type="text/plain",
    )

    # Generate the content
    response = client.models.generate_content_stream(
        model=model,
        contents=contents,
        config=generate_content_config,
    )

    # Process the response
    for chunk in response:
        if not chunk.candidates or not chunk.candidates[0].content or not chunk.candidates[0].content.parts:
            continue
        if chunk.candidates[0].content.parts[0].inline_data:
            inline_data = chunk.candidates[0].content.parts[0].inline_data
            file_extension = mimetypes.guess_extension(inline_data.mime_type)
            filename = f"{output_filename}{file_extension}"
            save_binary_file(filename, inline_data.data)
            
            # Convert binary data to PIL Image
            img = Image.open(io.BytesIO(inline_data.data))
            return img, f"Image saved as {filename}"
        else:
            return None, chunk.text

    return None, "No image generated"

# Function to handle chat interaction
def chat_handler(user_input, user_image, chat_history):
    # Add user message to chat history
    if user_image:
        # Save the uploaded image to a temporary file so Gradio can display it
        with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp_file:
            user_image.save(tmp_file.name)
            # Add the image to the chat history
            chat_history.append({"role": "user", "content": tmp_file.name})
    
    # Add the text prompt to the chat history
    if user_input:
        chat_history.append({"role": "user", "content": user_input})
    
    # If no input (neither text nor image), return early
    if not user_input and not user_image:
        chat_history.append({"role": "assistant", "content": "Please provide a prompt or an image."})
        return chat_history, None, ""

    # Generate image based on user input
    img, status = generate_image(user_input or "Generate an image", user_image)
    
    # Add AI response to chat history
    if img:
        # Save the PIL Image to a temporary file so Gradio can display it
        with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp_file:
            img.save(tmp_file.name)
            # Add the image as a file path that Gradio can serve
            chat_history.append({"role": "assistant", "content": tmp_file.name})
    
    # Add the status message
    chat_history.append({"role": "assistant", "content": status})
    
    return chat_history, None, ""

# Create Gradio interface with chatbot layout
with gr.Blocks(title="Image Editing Chatbot") as demo:
    gr.Markdown("# Image Editing Chatbot")
    gr.Markdown("Upload an image and/or type a prompt to generate or edit an image using Google's Gemini model")
    
    # Chatbot display area for the conversation thread
    chatbot = gr.Chatbot(
        label="Chat",
        height=300,  # Reduced height from 400 to 300
        type="messages",  # Explicitly set to 'messages' format
        avatar_images=(None, None)  # No avatars for simplicity
    )
    
    # Input area
    with gr.Row():
        # Image upload button
        image_input = gr.Image(
            label="Upload Image",
            type="pil",
            scale=1,
            height=100
        )
        # Text input
        prompt_input = gr.Textbox(
            label="",
            placeholder="Type something",
            show_label=False,
            container=False,
            scale=3
        )
        # Run button
        run_btn = gr.Button("Run", scale=1)
    
    # State to maintain chat history
    chat_state = gr.State([])

    # Connect the button to the chat handler
    run_btn.click(
        fn=chat_handler,
        inputs=[prompt_input, image_input, chat_state],
        outputs=[chatbot, image_input, prompt_input]
    )

    # Also allow Enter key to submit
    prompt_input.submit(
        fn=chat_handler,
        inputs=[prompt_input, image_input, chat_state],
        outputs=[chatbot, image_input, prompt_input]
    )

if __name__ == "__main__":
    demo.launch()