File size: 3,812 Bytes
ac3fd77
 
 
 
 
19ffd31
 
 
ac3fd77
 
 
 
 
 
19ffd31
 
ac3fd77
19ffd31
ac3fd77
 
 
 
 
 
 
19ffd31
ac3fd77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19ffd31
ac3fd77
 
 
 
 
19ffd31
 
ac3fd77
 
 
19ffd31
 
 
 
ac3fd77
 
 
 
 
19ffd31
 
 
 
 
 
 
 
 
 
 
ed4625b
 
 
31bf755
19ffd31
ed4625b
 
 
 
 
31bf755
 
ed4625b
 
 
 
 
 
 
 
 
 
 
 
31bf755
ed4625b
 
 
 
19ffd31
ed4625b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31bf755
ed4625b
19ffd31
ed4625b
 
 
 
 
19ffd31
ac3fd77
 
19ffd31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import base64
import os
import mimetypes
from google import genai
from google.genai import types
import gradio as gr
import io
from PIL import Image

def save_binary_file(file_name, data):
    f = open(file_name, "wb")
    f.write(data)
    f.close()

def generate_image(prompt, output_filename="generated_image"):
    # Initialize client with the API key
    client = genai.Client(
        api_key="AIzaSyAQcy3LfrkMy6DqS_8MqftAXu1Bx_ov_E8",
    )

    model = "gemini-2.0-flash-exp-image-generation"
    contents = [
        types.Content(
            role="user",
            parts=[
                types.Part.from_text(text=prompt),
            ],
        ),
    ]
    generate_content_config = types.GenerateContentConfig(
        temperature=1,
        top_p=0.95,
        top_k=40,
        max_output_tokens=8192,
        response_modalities=[
            "image",
            "text",
        ],
        safety_settings=[
            types.SafetySetting(
                category="HARM_CATEGORY_CIVIC_INTEGRITY",
                threshold="OFF",
            ),
        ],
        response_mime_type="text/plain",
    )

    # Generate the content
    response = client.models.generate_content_stream(
        model=model,
        contents=contents,
        config=generate_content_config,
    )

    # Process the response
    for chunk in response:
        if not chunk.candidates or not chunk.candidates[0].content or not chunk.candidates[0].content.parts:
            continue
        if chunk.candidates[0].content.parts[0].inline_data:
            inline_data = chunk.candidates[0].content.parts[0].inline_data
            file_extension = mimetypes.guess_extension(inline_data.mime_type)
            filename = f"{output_filename}{file_extension}"
            save_binary_file(filename, inline_data.data)
            
            # Convert binary data to PIL Image for Gradio display
            img = Image.open(io.BytesIO(inline_data.data))
            return img, f"Image saved as {filename}"
        else:
            return None, chunk.text

    return None, "No image generated"

# Function to handle chat interaction
def chat_handler(user_input, chat_history):
    # Add user message to chat history
    chat_history.append({"role": "user", "content": user_input})
    
    # Generate image based on user input
    img, status = generate_image(user_input)
    
    # Add AI response to chat history
    if img:
        chat_history.append({"role": "assistant", "content": img})
    chat_history.append({"role": "assistant", "content": status})
    
    return chat_history, ""

# Create Gradio interface with chatbot layout
with gr.Blocks(title="Image Editing Chatbot") as demo:
    gr.Markdown("# Image Editing Chatbot")
    gr.Markdown("Type a prompt to generate or edit an image using Google's Gemini model")
    
    # Chatbot display area
    chatbot = gr.Chatbot(
        label="Chat",
        height=400,
        type="messages",  # Explicitly set to 'messages' format
        avatar_images=(None, None)  # No avatars for simplicity
    )
    
    # Input area
    with gr.Row():
        prompt_input = gr.Textbox(
            label="",
            placeholder="Type something",
            show_label=False,
            container=False,
            scale=4
        )
        run_btn = gr.Button("Run", scale=1)
    
    # State to maintain chat history
    chat_state = gr.State([])

    # Connect the button to the chat handler
    run_btn.click(
        fn=chat_handler,
        inputs=[prompt_input, chat_state],
        outputs=[chatbot, prompt_input]
    )

    # Also allow Enter key to submit
    prompt_input.submit(
        fn=chat_handler,
        inputs=[prompt_input, chat_state],
        outputs=[chatbot, prompt_input]
    )

if __name__ == "__main__":
    demo.launch()