Spaces:
Running
Running
File size: 7,917 Bytes
ff6bd0c 47c4309 ff6bd0c ed4625b 662515a ed4625b 47c4309 ed4625b e93189f 844ed4d ed4625b 844ed4d ed4625b 19ffd31 ff6bd0c ed4625b 47c4309 ed4625b 47c4309 ed4625b ff6bd0c ed4625b ff6bd0c ed4625b 19ffd31 ed4625b ff6bd0c 19ffd31 ac3fd77 19ffd31 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
import base64
import os
import mimetypes
from google import genai
from google.genai import types
import gradio as gr
import io
from PIL import Image
def save_binary_file(file_name, data):
f = open(file_name, "wb")
f.write(data)
f.close()
def generate_image(prompt, image=None, output_filename="generated_image"):
# Initialize client with the API key
client = genai.Client(
api_key="AIzaSyAQcy3LfrkMy6DqS_8MqftAXu1Bx_ov_E8",
)
model = "gemini-2.0-flash-exp-image-generation"
parts = [types.Part.from_text(text=prompt)]
# If an image is provided, add it to the content
if image:
# Convert PIL Image to bytes
img_byte_arr = io.BytesIO()
image.save(img_byte_arr, format="PNG")
img_bytes = img_byte_arr.getvalue()
# Add the image as a Part with inline_data
parts.append({
"inline_data": {
"mime_type": "image/png",
"data": img_bytes
}
})
contents = [
types.Content(
role="user",
parts=parts,
),
]
generate_content_config = types.GenerateContentConfig(
temperature=1,
top_p=0.95,
top_k=40,
max_output_tokens=8192,
response_modalities=[
"image",
"text",
],
safety_settings=[
types.SafetySetting(
category="HARM_CATEGORY_CIVIC_INTEGRITY",
threshold="OFF",
),
],
response_mime_type="text/plain",
)
# Generate the content
response = client.models.generate_content_stream(
model=model,
contents=contents,
config=generate_content_config,
)
# Process the response
for chunk in response:
if not chunk.candidates or not chunk.candidates[0].content or not chunk.candidates[0].content.parts:
continue
if chunk.candidates[0].content.parts[0].inline_data:
inline_data = chunk.candidates[0].content.parts[0].inline_data
file_extension = mimetypes.guess_extension(inline_data.mime_type)
filename = f"{output_filename}{file_extension}"
save_binary_file(filename, inline_data.data)
# Convert binary data to PIL Image for Gradio display
img = Image.open(io.BytesIO(inline_data.data))
return img, f"Image saved as {filename}"
else:
return None, chunk.text
return None, "No image generated"
# Function to handle chat interaction
def chat_handler(prompt, user_image, chat_history, output_filename="generated_image"):
# Add the prompt to the chat history
if prompt:
chat_history.append({"role": "user", "content": prompt})
# If no input, return early
if not prompt and not user_image:
chat_history.append({"role": "assistant", "content": "Please provide a prompt or an image."})
return chat_history, user_image, None, ""
# Generate image based on user input
img, status = generate_image(prompt or "Generate an image", user_image, output_filename)
# Add the status message to the chat history
chat_history.append({"role": "assistant", "content": status})
return chat_history, user_image, img, ""
# Function to update chat history with thumbnails
def update_chat_with_thumbnails(chat_history, uploaded_image_url, generated_image_url):
# Create a copy of the chat history to avoid modifying the input directly
updated_history = chat_history.copy()
# If there's an uploaded image, add its thumbnail to the chat history
if uploaded_image_url:
thumbnail_html = f'<img src="{uploaded_image_url}" width="100px" style="margin: 5px;" />'
updated_history.append({"role": "user", "content": thumbnail_html})
# If there's a generated image, add its thumbnail to the chat history
if generated_image_url:
thumbnail_html = f'<img src="{generated_image_url}" width="100px" style="margin: 5px;" />'
updated_history.append({"role": "assistant", "content": thumbnail_html})
return updated_history
# Create Gradio interface
with gr.Blocks(title="Image Editing Chatbot") as demo:
gr.Markdown("# Image Editing Chatbot")
gr.Markdown("Upload an image and/or type a prompt to generate or edit an image using Google's Gemini model")
# Chatbot display area for text messages and thumbnails
chatbot = gr.Chatbot(
label="Chat",
height=300,
type="messages",
avatar_images=(None, None)
)
# Separate image outputs
with gr.Row():
uploaded_image_output = gr.Image(label="Uploaded Image")
generated_image_output = gr.Image(label="Generated Image")
# Input area
with gr.Row():
with gr.Column():
image_input = gr.Image(
label="Upload Image",
type="pil",
scale=1,
height=100
)
prompt_input = gr.Textbox(
label="Prompt",
placeholder="Enter your image description here...",
lines=3
)
filename_input = gr.Textbox(
label="Output Filename",
value="generated_image",
placeholder="Enter desired filename (without extension)"
)
generate_btn = gr.Button("Generate Image")
# Hidden components to store image URLs
uploaded_image_url = gr.State("")
generated_image_url = gr.State("")
# State to maintain chat history
chat_state = gr.State([])
# JavaScript to extract image URLs and update the chat history
gr.HTML("""
<script>
async function updateImageURLs() {
// Get the image elements from the gr.Image components
const uploadedImage = document.querySelector('#component-3 img'); // Adjust component ID based on Gradio's generated IDs
const generatedImage = document.querySelector('#component-4 img'); // Adjust component ID based on Gradio's generated IDs
// Extract the src attributes (URLs)
const uploadedImageURL = uploadedImage && uploadedImage.src ? uploadedImage.src : "";
const generatedImageURL = generatedImage && generatedImage.src ? generatedImage.src : "";
// Call the Python function to update the chat history with the URLs
const chatHistory = await gradioApp().querySelector('#component-2').value; // Adjust component ID for chat_state
const result = await gradioApp().querySelector('#component-0').callFunction('update_chat_with_thumbnails', [chatHistory, uploadedImageURL, generatedImageURL]);
return result;
}
// Run the function when the Generate Image button is clicked
document.querySelector('#component-8').addEventListener('click', async () => { // Adjust component ID for generate_btn
// Wait for the images to update
setTimeout(async () => {
const updatedChat = await updateImageURLs();
// Update the chatbot component with the new history
document.querySelector('#component-1').value = updatedChat; // Adjust component ID for chatbot
}, 1000); // Delay to ensure images are loaded
});
</script>
""")
# Connect the button to the chat handler
generate_btn.click(
fn=chat_handler,
inputs=[prompt_input, image_input, chat_state, filename_input],
outputs=[chatbot, uploaded_image_output, generated_image_output, prompt_input]
)
# Also allow Enter key to submit
prompt_input.submit(
fn=chat_handler,
inputs=[prompt_input, image_input, chat_state, filename_input],
outputs=[chatbot, uploaded_image_output, generated_image_output, prompt_input]
)
if __name__ == "__main__":
demo.launch() |