File size: 5,231 Bytes
ff6bd0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed4625b
 
662515a
ed4625b
844ed4d
ed4625b
 
e93189f
844ed4d
 
ed4625b
 
844ed4d
 
 
 
 
ed4625b
19ffd31
ff6bd0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed4625b
 
 
 
 
ff6bd0c
ed4625b
ff6bd0c
 
ed4625b
19ffd31
ed4625b
 
 
ff6bd0c
 
19ffd31
ac3fd77
 
19ffd31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import base64
import os
import mimetypes
from google import genai
from google.genai import types
import gradio as gr
import io
from PIL import Image

def save_binary_file(file_name, data):
    f = open(file_name, "wb")
    f.write(data)
    f.close()

def generate_image(prompt, image=None, output_filename="generated_image"):
    # Initialize client with the API key
    client = genai.Client(
        api_key="AIzaSyAQcy3LfrkMy6DqS_8MqftAXu1Bx_ov_E8",
    )

    model = "gemini-2.0-flash-exp-image-generation"
    parts = [types.Part.from_text(text=prompt)]
    
    # If an image is provided, add it to the content
    if image:
        # Convert PIL Image to bytes
        img_byte_arr = io.BytesIO()
        image.save(img_byte_arr, format="PNG")
        img_bytes = img_byte_arr.getvalue()
        # Add the image as a Part with inline_data
        parts.append({
            "inline_data": {
                "mime_type": "image/png",
                "data": img_bytes
            }
        })

    contents = [
        types.Content(
            role="user",
            parts=parts,
        ),
    ]
    generate_content_config = types.GenerateContentConfig(
        temperature=1,
        top_p=0.95,
        top_k=40,
        max_output_tokens=8192,
        response_modalities=[
            "image",
            "text",
        ],
        safety_settings=[
            types.SafetySetting(
                category="HARM_CATEGORY_CIVIC_INTEGRITY",
                threshold="OFF",
            ),
        ],
        response_mime_type="text/plain",
    )

    # Generate the content
    response = client.models.generate_content_stream(
        model=model,
        contents=contents,
        config=generate_content_config,
    )

    # Process the response
    for chunk in response:
        if not chunk.candidates or not chunk.candidates[0].content or not chunk.candidates[0].content.parts:
            continue
        if chunk.candidates[0].content.parts[0].inline_data:
            inline_data = chunk.candidates[0].content.parts[0].inline_data
            file_extension = mimetypes.guess_extension(inline_data.mime_type)
            filename = f"{output_filename}{file_extension}"
            save_binary_file(filename, inline_data.data)
            
            # Convert binary data to PIL Image for Gradio display
            img = Image.open(io.BytesIO(inline_data.data))
            return img, f"Image saved as {filename}"
        else:
            return None, chunk.text

    return None, "No image generated"

# Function to handle chat interaction
def chat_handler(prompt, user_image, chat_history, output_filename="generated_image"):
    # Add the prompt to the chat history
    if prompt:
        chat_history.append({"role": "user", "content": prompt})
    
    # If no input, return early
    if not prompt and not user_image:
        chat_history.append({"role": "assistant", "content": "Please provide a prompt or an image."})
        return chat_history, user_image, None, ""

    # Generate image based on user input
    img, status = generate_image(prompt or "Generate an image", user_image, output_filename)
    
    # Add the status message to the chat history
    chat_history.append({"role": "assistant", "content": status})
    
    return chat_history, user_image, img, ""

# Create Gradio interface
with gr.Blocks(title="Image Editing Chatbot") as demo:
    gr.Markdown("# Image Editing Chatbot")
    gr.Markdown("Upload an image and/or type a prompt to generate or edit an image using Google's Gemini model")
    
    # Chatbot display area for text messages
    chatbot = gr.Chatbot(
        label="Chat",
        height=300,
        type="messages",
        avatar_images=(None, None)
    )
    
    # Separate image outputs
    with gr.Row():
        uploaded_image_output = gr.Image(label="Uploaded Image")
        generated_image_output = gr.Image(label="Generated Image")
    
    # Input area
    with gr.Row():
        with gr.Column():
            image_input = gr.Image(
                label="Upload Image",
                type="pil",
                scale=1,
                height=100
            )
            prompt_input = gr.Textbox(
                label="Prompt",
                placeholder="Enter your image description here...",
                lines=3
            )
            filename_input = gr.Textbox(
                label="Output Filename",
                value="generated_image",
                placeholder="Enter desired filename (without extension)"
            )
            generate_btn = gr.Button("Generate Image")
    
    # State to maintain chat history
    chat_state = gr.State([])

    # Connect the button to the chat handler
    generate_btn.click(
        fn=chat_handler,
        inputs=[prompt_input, image_input, chat_state, filename_input],
        outputs=[chatbot, uploaded_image_output, generated_image_output, prompt_input]
    )

    # Also allow Enter key to submit
    prompt_input.submit(
        fn=chat_handler,
        inputs=[prompt_input, image_input, chat_state, filename_input],
        outputs=[chatbot, uploaded_image_output, generated_image_output, prompt_input]
    )

if __name__ == "__main__":
    demo.launch()