gemini-image / app.py
Deadmon's picture
Update app.py
6c4c5f5 verified
raw
history blame
6.56 kB
import base64
import os
import mimetypes
from google import genai
from google.genai import types
import gradio as gr
import io
from PIL import Image
def save_binary_file(file_name, data):
f = open(file_name, "wb")
f.write(data)
f.close()
def generate_image(prompt, image=None, output_filename="generated_image"):
# Initialize client with the API key
client = genai.Client(
api_key="AIzaSyAQcy3LfrkMy6DqS_8MqftAXu1Bx_ov_E8",
)
model = "gemini-2.0-flash-exp-image-generation"
parts = [types.Part.from_text(text=prompt)]
# If an image is provided, add it to the content
if image:
# Convert PIL Image to bytes
img_byte_arr = io.BytesIO()
image.save(img_byte_arr, format="PNG")
img_bytes = img_byte_arr.getvalue()
# Add the image as a Part with inline_data
parts.append({
"inline_data": {
"mime_type": "image/png",
"data": img_bytes
}
})
contents = [
types.Content(
role="user",
parts=parts,
),
]
generate_content_config = types.GenerateContentConfig(
temperature=1,
top_p=0.95,
top_k=40,
max_output_tokens=8192,
response_modalities=[
"image",
"text",
],
safety_settings=[
types.SafetySetting(
category="HARM_CATEGORY_CIVIC_INTEGRITY",
threshold="OFF",
),
],
response_mime_type="text/plain",
)
# Generate the content
response = client.models.generate_content_stream(
model=model,
contents=contents,
config=generate_content_config,
)
# Process the response
for chunk in response:
if not chunk.candidates or not chunk.candidates[0].content or not chunk.candidates[0].content.parts:
continue
if chunk.candidates[0].content.parts[0].inline_data:
inline_data = chunk.candidates[0].content.parts[0].inline_data
file_extension = mimetypes.guess_extension(inline_data.mime_type)
filename = f"{output_filename}{file_extension}"
save_binary_file(filename, inline_data.data)
# Convert binary data to PIL Image
img = Image.open(io.BytesIO(inline_data.data))
return img, f"Image saved as {filename}"
else:
return None, chunk.text
return None, "No image generated"
# Function to handle chat interaction
def chat_handler(prompt, user_image, chat_history, output_filename="generated_image"):
# Add the user prompt and image to the chat history
user_message_content = []
if prompt:
user_message_content.append(prompt)
if user_image is not None: # Handle case where no image is uploaded initially
# Convert user image to base64 for chatbot display
buffered = io.BytesIO()
user_image.save(buffered, format="PNG")
user_image_base64 = base64.b64encode(buffered.getvalue()).decode()
user_image_data_uri = f"data:image/png;base64,{user_image_base64}"
user_message_content.append(user_image_data_uri) # Use data URI for user image in chat history
if user_message_content:
chat_history.append({"role": "user", "content": user_message_content if len(user_message_content) > 1 else user_message_content[0]})
# If no input, return early
if not prompt and not user_image:
chat_history.append({"role": "assistant", "content": "Please provide a prompt or an image."})
return chat_history, user_image, None, ""
# Generate image based on user input
img, status = generate_image(prompt or "Generate an image", user_image, output_filename)
assistant_message_content = None # Initialize to None
if img:
# Create thumbnail for chatbot
thumbnail_size = (100, 100) # Define thumbnail size
thumbnail = img.copy()
thumbnail.thumbnail(thumbnail_size)
# Convert thumbnail to base64 for chatbot display
buffered = io.BytesIO()
thumbnail.save(buffered, format="PNG")
thumbnail_base64 = base64.b64encode(buffered.getvalue()).decode()
thumbnail_data_uri = f"data:image/png;base64,{thumbnail_base64}"
assistant_message_content = thumbnail_data_uri # ONLY data URI as assistant message
else:
assistant_message_content = status # If no image, send text status
# Add assistant's response to chat history
chat_history.append({"role": "assistant", "content": assistant_message_content})
return chat_history, user_image, img, ""
# Create Gradio interface
with gr.Blocks(title="Image Editing Chatbot") as demo:
gr.Markdown("# Image Editing Chatbot")
gr.Markdown("Upload an image and/or type a prompt to generate or edit an image using Google's Gemini model")
# Chatbot display area for text messages
chatbot = gr.Chatbot(
label="Chat",
height=300,
type="messages",
avatar_images=(None, None)
)
# Separate image outputs
with gr.Row():
uploaded_image_output = gr.Image(label="Uploaded Image")
generated_image_output = gr.Image(label="Generated Image")
# Input area
with gr.Row():
with gr.Column():
image_input = gr.Image(
label="Upload Image",
type="pil",
scale=1,
height=100
)
prompt_input = gr.Textbox(
label="Prompt",
placeholder="Enter your image description here...",
lines=3
)
filename_input = gr.Textbox(
label="Output Filename",
value="generated_image",
placeholder="Enter desired filename (without extension)"
)
generate_btn = gr.Button("Generate Image")
# State to maintain chat history
chat_state = gr.State([])
# Connect the button to the chat handler
generate_btn.click(
fn=chat_handler,
inputs=[prompt_input, image_input, chat_state, filename_input],
outputs=[chatbot, uploaded_image_output, generated_image_output, prompt_input]
)
# Also allow Enter key to submit
prompt_input.submit(
fn=chat_handler,
inputs=[prompt_input, image_input, chat_state, filename_input],
outputs=[chatbot, uploaded_image_output, generated_image_output, prompt_input]
)
if __name__ == "__main__":
demo.launch()