File size: 17,047 Bytes
1366db9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 |
#
# Copyright (c) 2024–2025, Daily
#
# SPDX-License-Identifier: BSD 2-Clause License
#
import argparse
import asyncio
import functools
import os
import sys
from call_connection_manager import CallConfigManager, SessionManager
from dotenv import load_dotenv
from loguru import logger
from pipecat.audio.vad.silero import SileroVADAnalyzer
from pipecat.frames.frames import (
EndFrame,
EndTaskFrame,
InputAudioRawFrame,
StopTaskFrame,
TranscriptionFrame,
UserStartedSpeakingFrame,
UserStoppedSpeakingFrame,
)
from pipecat.pipeline.pipeline import Pipeline
from pipecat.pipeline.runner import PipelineRunner
from pipecat.pipeline.task import PipelineParams, PipelineTask
from pipecat.processors.frame_processor import FrameDirection, FrameProcessor
from pipecat.services.cartesia.tts import CartesiaTTSService
from pipecat.services.deepgram.stt import DeepgramSTTService
from pipecat.services.google.google import GoogleLLMContext
from pipecat.services.google.llm import GoogleLLMService
from pipecat.services.llm_service import FunctionCallParams
from pipecat.transports.services.daily import (
DailyParams,
DailyTransport,
)
load_dotenv(override=True)
logger.remove(0)
logger.add(sys.stderr, level="DEBUG")
daily_api_key = os.getenv("DAILY_API_KEY", "")
daily_api_url = os.getenv("DAILY_API_URL", "https://api.daily.co/v1")
# ------------ HELPER CLASSES ------------
class UserAudioCollector(FrameProcessor):
"""Collects audio frames in a buffer, then adds them to the LLM context when the user stops speaking."""
def __init__(self, context, user_context_aggregator):
super().__init__()
self._context = context
self._user_context_aggregator = user_context_aggregator
self._audio_frames = []
self._start_secs = 0.2 # this should match VAD start_secs (hardcoding for now)
self._user_speaking = False
async def process_frame(self, frame, direction):
await super().process_frame(frame, direction)
if isinstance(frame, TranscriptionFrame):
# Skip transcription frames - we're handling audio directly
return
elif isinstance(frame, UserStartedSpeakingFrame):
self._user_speaking = True
elif isinstance(frame, UserStoppedSpeakingFrame):
self._user_speaking = False
self._context.add_audio_frames_message(audio_frames=self._audio_frames)
await self._user_context_aggregator.push_frame(
self._user_context_aggregator.get_context_frame()
)
elif isinstance(frame, InputAudioRawFrame):
if self._user_speaking:
# When speaking, collect frames
self._audio_frames.append(frame)
else:
# Maintain a rolling buffer of recent audio (for start of speech)
self._audio_frames.append(frame)
frame_duration = len(frame.audio) / 16 * frame.num_channels / frame.sample_rate
buffer_duration = frame_duration * len(self._audio_frames)
while buffer_duration > self._start_secs:
self._audio_frames.pop(0)
buffer_duration -= frame_duration
await self.push_frame(frame, direction)
class FunctionHandlers:
"""Handlers for the voicemail detection bot functions."""
def __init__(self, session_manager):
self.session_manager = session_manager
self.prompt = None # Can be set externally
async def voicemail_response(self, params: FunctionCallParams):
"""Function the bot can call to leave a voicemail message."""
message = """You are Chatbot leaving a voicemail message. Say EXACTLY this message and then terminate the call:
'Hello, this is a message for Pipecat example user. This is Chatbot. Please call back on 123-456-7891. Thank you.'"""
await params.result_callback(message)
async def human_conversation(self, params: FunctionCallParams):
"""Function called when bot detects it's talking to a human."""
# Update state to indicate human was detected
self.session_manager.call_flow_state.set_human_detected()
await params.llm.push_frame(StopTaskFrame(), FrameDirection.UPSTREAM)
# ------------ MAIN FUNCTION ------------
async def main(
room_url: str,
token: str,
body: dict,
):
# ------------ CONFIGURATION AND SETUP ------------
# Create a configuration manager from the provided body
call_config_manager = CallConfigManager.from_json_string(body) if body else CallConfigManager()
# Get important configuration values
dialout_settings = call_config_manager.get_dialout_settings()
test_mode = call_config_manager.is_test_mode()
# Get caller info (might be None for dialout scenarios)
caller_info = call_config_manager.get_caller_info()
logger.info(f"Caller info: {caller_info}")
# Initialize the session manager
session_manager = SessionManager()
# ------------ TRANSPORT AND SERVICES SETUP ------------
# Initialize transport
transport = DailyTransport(
room_url,
token,
"Voicemail Detection Bot",
DailyParams(
api_url=daily_api_url,
api_key=daily_api_key,
audio_in_enabled=True,
audio_out_enabled=True,
video_out_enabled=False,
vad_analyzer=SileroVADAnalyzer(),
),
)
# Initialize TTS
tts = CartesiaTTSService(
api_key=os.getenv("CARTESIA_API_KEY", ""),
voice_id="b7d50908-b17c-442d-ad8d-810c63997ed9", # Use Helpful Woman voice by default
)
# Initialize speech-to-text service (for human conversation phase)
stt = DeepgramSTTService(api_key=os.getenv("DEEPGRAM_API_KEY"))
# ------------ FUNCTION DEFINITIONS ------------
async def terminate_call(
params: FunctionCallParams,
session_manager=None,
):
"""Function the bot can call to terminate the call."""
if session_manager:
# Set call terminated flag in the session manager
session_manager.call_flow_state.set_call_terminated()
await params.llm.queue_frame(EndTaskFrame(), FrameDirection.UPSTREAM)
# ------------ VOICEMAIL DETECTION PHASE SETUP ------------
# Define tools for both LLMs
tools = [
{
"function_declarations": [
{
"name": "switch_to_voicemail_response",
"description": "Call this function when you detect this is a voicemail system.",
},
{
"name": "switch_to_human_conversation",
"description": "Call this function when you detect this is a human.",
},
{
"name": "terminate_call",
"description": "Call this function to terminate the call.",
},
]
}
]
# Get voicemail detection prompt
voicemail_detection_prompt = call_config_manager.get_prompt("voicemail_detection_prompt")
if voicemail_detection_prompt:
system_instruction = voicemail_detection_prompt
else:
system_instruction = """You are Chatbot trying to determine if this is a voicemail system or a human.
If you hear any of these phrases (or very similar ones):
- "Please leave a message after the beep"
- "No one is available to take your call"
- "Record your message after the tone"
- "You have reached voicemail for..."
- "You have reached [phone number]"
- "[phone number] is unavailable"
- "The person you are trying to reach..."
- "The number you have dialed..."
- "Your call has been forwarded to an automated voice messaging system"
Then call the function switch_to_voicemail_response.
If it sounds like a human (saying hello, asking questions, etc.), call the function switch_to_human_conversation.
DO NOT say anything until you've determined if this is a voicemail or human.
If you are asked to terminate the call, **IMMEDIATELY** call the `terminate_call` function. **FAILURE TO CALL `terminate_call` IMMEDIATELY IS A MISTAKE.**"""
# Initialize voicemail detection LLM
voicemail_detection_llm = GoogleLLMService(
model="models/gemini-2.0-flash-lite", # Lighter model for faster detection
api_key=os.getenv("GOOGLE_API_KEY"),
system_instruction=system_instruction,
tools=tools,
)
# Initialize context and context aggregator
voicemail_detection_context = GoogleLLMContext()
voicemail_detection_context_aggregator = voicemail_detection_llm.create_context_aggregator(
voicemail_detection_context
)
# Get custom voicemail prompt if available
voicemail_prompt = call_config_manager.get_prompt("voicemail_prompt")
# Set up function handlers
handlers = FunctionHandlers(session_manager)
handlers.prompt = voicemail_prompt # Set custom prompt if available
# Register functions with the voicemail detection LLM
voicemail_detection_llm.register_function(
"switch_to_voicemail_response",
handlers.voicemail_response,
)
voicemail_detection_llm.register_function(
"switch_to_human_conversation", handlers.human_conversation
)
voicemail_detection_llm.register_function(
"terminate_call", lambda params: terminate_call(params, session_manager)
)
# Set up audio collector for handling audio input
voicemail_detection_audio_collector = UserAudioCollector(
voicemail_detection_context, voicemail_detection_context_aggregator.user()
)
# Build voicemail detection pipeline
voicemail_detection_pipeline = Pipeline(
[
transport.input(), # Transport user input
voicemail_detection_audio_collector, # Collect audio frames
voicemail_detection_context_aggregator.user(), # User context
voicemail_detection_llm, # LLM
tts, # TTS
transport.output(), # Transport bot output
voicemail_detection_context_aggregator.assistant(), # Assistant context
]
)
# Create pipeline task
voicemail_detection_pipeline_task = PipelineTask(
voicemail_detection_pipeline,
params=PipelineParams(allow_interruptions=True),
)
# ------------ EVENT HANDLERS ------------
@transport.event_handler("on_joined")
async def on_joined(transport, data):
# Start dialout if needed
if not test_mode and dialout_settings:
logger.debug("Dialout settings detected; starting dialout")
await call_config_manager.start_dialout(transport, dialout_settings)
@transport.event_handler("on_dialout_connected")
async def on_dialout_connected(transport, data):
logger.debug(f"Dial-out connected: {data}")
@transport.event_handler("on_dialout_answered")
async def on_dialout_answered(transport, data):
logger.debug(f"Dial-out answered: {data}")
# Start capturing transcription
await transport.capture_participant_transcription(data["sessionId"])
@transport.event_handler("on_first_participant_joined")
async def on_first_participant_joined(transport, participant):
logger.debug(f"First participant joined: {participant['id']}")
if test_mode:
await transport.capture_participant_transcription(participant["id"])
@transport.event_handler("on_participant_left")
async def on_participant_left(transport, participant, reason):
# Mark that a participant left early
session_manager.call_flow_state.set_participant_left_early()
await voicemail_detection_pipeline_task.queue_frame(EndFrame())
# ------------ RUN VOICEMAIL DETECTION PIPELINE ------------
if test_mode:
logger.debug("Detect voicemail example. You can test this in Daily Prebuilt")
runner = PipelineRunner()
print("!!! starting voicemail detection pipeline")
try:
await runner.run(voicemail_detection_pipeline_task)
except Exception as e:
logger.error(f"Error in voicemail detection pipeline: {e}")
import traceback
logger.error(traceback.format_exc())
print("!!! Done with voicemail detection pipeline")
# Check if we should exit early
if (
session_manager.call_flow_state.participant_left_early
or session_manager.call_flow_state.call_terminated
):
if session_manager.call_flow_state.participant_left_early:
print("!!! Participant left early; terminating call")
elif session_manager.call_flow_state.call_terminated:
print("!!! Bot terminated call; not proceeding to human conversation")
return
# ------------ HUMAN CONVERSATION PHASE SETUP ------------
# Get human conversation prompt
human_conversation_prompt = call_config_manager.get_prompt("human_conversation_prompt")
if human_conversation_prompt:
human_conversation_system_instruction = human_conversation_prompt
else:
human_conversation_system_instruction = """You are Chatbot talking to a human. Be friendly and helpful.
Start with: "Hello! I'm a friendly chatbot. How can I help you today?"
Keep your responses brief and to the point. Listen to what the person says.
When the person indicates they're done with the conversation by saying something like:
- "Goodbye"
- "That's all"
- "I'm done"
- "Thank you, that's all I needed"
THEN say: "Thank you for chatting. Goodbye!" and call the terminate_call function."""
# Initialize human conversation LLM
human_conversation_llm = GoogleLLMService(
model="models/gemini-2.0-flash-001", # Full model for better conversation
api_key=os.getenv("GOOGLE_API_KEY"),
system_instruction=human_conversation_system_instruction,
tools=tools,
)
# Initialize context and context aggregator
human_conversation_context = GoogleLLMContext()
human_conversation_context_aggregator = human_conversation_llm.create_context_aggregator(
human_conversation_context
)
# Register terminate function with the human conversation LLM
human_conversation_llm.register_function(
"terminate_call", functools.partial(terminate_call, session_manager=session_manager)
)
# Build human conversation pipeline
human_conversation_pipeline = Pipeline(
[
transport.input(), # Transport user input
stt, # Speech-to-text
human_conversation_context_aggregator.user(), # User context
human_conversation_llm, # LLM
tts, # TTS
transport.output(), # Transport bot output
human_conversation_context_aggregator.assistant(), # Assistant context
]
)
# Create pipeline task
human_conversation_pipeline_task = PipelineTask(
human_conversation_pipeline,
params=PipelineParams(allow_interruptions=True),
)
# Update participant left handler for human conversation phase
@transport.event_handler("on_participant_left")
async def on_participant_left(transport, participant, reason):
await voicemail_detection_pipeline_task.queue_frame(EndFrame())
await human_conversation_pipeline_task.queue_frame(EndFrame())
# ------------ RUN HUMAN CONVERSATION PIPELINE ------------
print("!!! starting human conversation pipeline")
# Initialize the context with system message
human_conversation_context_aggregator.user().set_messages(
[call_config_manager.create_system_message(human_conversation_system_instruction)]
)
# Queue the context frame to start the conversation
await human_conversation_pipeline_task.queue_frames(
[human_conversation_context_aggregator.user().get_context_frame()]
)
# Run the human conversation pipeline
try:
await runner.run(human_conversation_pipeline_task)
except Exception as e:
logger.error(f"Error in voicemail detection pipeline: {e}")
import traceback
logger.error(traceback.format_exc())
print("!!! Done with human conversation pipeline")
# ------------ SCRIPT ENTRY POINT ------------
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Pipecat Voicemail Detection Bot")
parser.add_argument("-u", "--url", type=str, help="Room URL")
parser.add_argument("-t", "--token", type=str, help="Room Token")
parser.add_argument("-b", "--body", type=str, help="JSON configuration string")
args = parser.parse_args()
# Log the arguments for debugging
logger.info(f"Room URL: {args.url}")
logger.info(f"Token: {args.token}")
logger.info(f"Body provided: {bool(args.body)}")
asyncio.run(main(args.url, args.token, args.body))
|