File size: 5,770 Bytes
bc35cc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa6b35c
bc35cc2
 
 
fa6b35c
bc35cc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
# App code based on: https://github.com/petergro-hub/ComicInpainting
# Model based on: https://github.com/saic-mdal/lama

import numpy as np
import pandas as pd
import streamlit as st
import os
from datetime import datetime
from PIL import Image
from streamlit_drawable_canvas import st_canvas
from io import BytesIO
from copy import deepcopy

from src.core import process_inpaint


def image_download_button(pil_image, filename: str, fmt: str, label="Download"):
    if fmt not in ["jpg", "png"]:
        raise Exception(f"Unknown image format (Available: {fmt} - case sensitive)")
    
    pil_format = "JPEG" if fmt == "jpg" else "PNG"
    file_format = "jpg" if fmt == "jpg" else "png"
    mime = "image/jpeg" if fmt == "jpg" else "image/png"
    
    buf = BytesIO()
    pil_image.save(buf, format=pil_format)
    
    return st.download_button(
        label=label,
        data=buf.getvalue(),
        file_name=f'{filename}.{file_format}',
        mime=mime,
    )



if "button_id" not in st.session_state:
    st.session_state["button_id"] = ""
if "color_to_label" not in st.session_state:
    st.session_state["color_to_label"] = {}

if 'reuse_image' not in st.session_state:
    st.session_state.reuse_image = None
def set_image(img):
    st.session_state.reuse_image = img

st.title("AI Photo Object Removal")

# st.image(open("assets/demo.png", "rb").read())

st.markdown(
    """
    Draw over the parts of the image you want to remove, then our AI will remove them.
    """
)
uploaded_file = st.file_uploader("Choose image", accept_multiple_files=False, type=["png", "jpg", "jpeg"])

if uploaded_file is not None:
    
    if st.session_state.reuse_image is not None:
        img_input = Image.fromarray(st.session_state.reuse_image)
    else:
        bytes_data = uploaded_file.getvalue()
        img_input = Image.open(BytesIO(bytes_data)).convert("RGBA")

    # Resize the image while maintaining aspect ratio
    max_size = 2000
    img_width, img_height = img_input.size
    if img_width > max_size or img_height > max_size:
        if img_width > img_height:
            new_width = max_size
            new_height = int((max_size / img_width) * img_height)
        else:
            new_height = max_size
            new_width = int((max_size / img_height) * img_width)
        img_input = img_input.resize((new_width, new_height))
    
    stroke_width = st.slider("Brush size", 1, 100, 50)

    st.write("**Now draw (brush) the part of image that you want to remove.**")
    
    # Canvas size logic
    canvas_bg = deepcopy(img_input)
    aspect_ratio = canvas_bg.width / canvas_bg.height
    streamlit_width = 720
    
    # Max width is 720. Resize the height to maintain its aspectratio.
    if canvas_bg.width > streamlit_width:
        canvas_bg = canvas_bg.resize((streamlit_width, int(streamlit_width / aspect_ratio)))
    
    canvas_result = st_canvas(
        stroke_color="rgba(255, 0, 255, 1)",
        stroke_width=stroke_width,
        background_image=canvas_bg,
        width=canvas_bg.width,
        height=canvas_bg.height,
        drawing_mode="freedraw",
        key="compute_arc_length", 
    )
    
    if canvas_result.image_data is not None:
        im = np.array(Image.fromarray(canvas_result.image_data.astype(np.uint8)).resize(img_input.size))
        background = np.where(
            (im[:, :, 0] == 0) & 
            (im[:, :, 1] == 0) & 
            (im[:, :, 2] == 0)
        )
        drawing = np.where(
            (im[:, :, 0] == 255) & 
            (im[:, :, 1] == 0) & 
            (im[:, :, 2] == 255)
        )
        im[background]=[0,0,0,255]
        im[drawing]=[0,0,0,0] # RGBA
        
        reuse = False
        
        if st.button('Submit'):
            
            with st.spinner("AI is doing the magic!"):
                output = process_inpaint(np.array(img_input), np.array(im)) #TODO Put button here
                img_output = Image.fromarray(output).convert("RGB")
            
            st.write("AI has finished the job!")
            st.image(img_output)
            # reuse = st.button('Edit again (Re-use this image)', on_click=set_image, args=(inpainted_img, ))
            
            uploaded_name = os.path.splitext(uploaded_file.name)[0]
            image_download_button(
                pil_image=img_output,
                filename=uploaded_name,
                fmt="jpg",
                label="Download Image"
            )
            
            st.info("**TIP**: If the result is not perfect, you can download it then "
                    "upload then remove the artifacts.")


<style>
body {
    font-family: 'Arial', sans-serif;
    margin: 0;
    background-color: #1a1a2e;
    color: #ffffff;
    overflow-x: hidden;
}

.stButton button {
    background-color: #ffffff;
    color: #1a1a2e;
}

.stButton button:hover {
    background-color: #9370db;
    color: #ffffff;
}

.stSlider {
    color: #ffffff;
}

.stSlider .stSlider-label {
    color: #ffffff;
}

.stSlider .stSlider-track {
    background-color: #4a4a5e;
}

.stSlider .stSlider-thumb {
    background-color: #ffffff;
}

.stMarkdown {
    color: #ffffff;
}

.stSpinner {
    color: #ffffff;
}

.stFileUploader {
    background-color: #2a2a3e;
    color: #ffffff;
    border-color: #4a4a5e;
}

.stFileUploader:hover {
    background-color: #3a3a4e;
}

.stImage {
    max-width: 100%;
    height: auto;
}

.stTextInput input {
    background-color: #2a2a3e;
    color: #ffffff;
    border-color: #4a4a5e;
}

.stTextInput input:focus {
    border-color: #6a6a7e;
}

.stDownloadButton {
    background-color: #ffffff;
    color: #1a1a2e;
}

.stDownloadButton:hover {
    background-color: #9370db;
    color: #ffffff;
}

.stInfo {
    background-color: #2a2a3e;
    color: #ffffff;
}
</style>