Spaces:
Paused
Paused
#!/usr/bin/env python | |
import os | |
import random | |
import gradio as gr | |
import numpy as np | |
import PIL.Image | |
import torch | |
import torchvision.transforms.functional as TF | |
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL | |
from diffusers import DDIMScheduler, EulerAncestralDiscreteScheduler | |
from controlnet_aux import PidiNetDetector, HEDdetector | |
from diffusers.utils import load_image | |
from huggingface_hub import HfApi | |
from pathlib import Path | |
from PIL import Image, ImageOps | |
import torch | |
import numpy as np | |
import cv2 | |
import os | |
import random | |
import spaces | |
from gradio_imageslider import ImageSlider | |
js_func = """ | |
function refresh() { | |
const url = new URL(window.location); | |
if (url.searchParams.get('__theme') !== 'dark') { | |
url.searchParams.set('__theme', 'dark'); | |
window.location.href = url.href; | |
} | |
} | |
""" | |
def nms(x, t, s): | |
x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s) | |
f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8) | |
f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8) | |
f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8) | |
f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8) | |
y = np.zeros_like(x) | |
for f in [f1, f2, f3, f4]: | |
np.putmask(y, cv2.dilate(x, kernel=f) == x, x) | |
z = np.zeros_like(y, dtype=np.uint8) | |
z[y > t] = 255 | |
return z | |
def HWC3(x): | |
assert x.dtype == np.uint8 | |
if x.ndim == 2: | |
x = x[:, :, None] | |
assert x.ndim == 3 | |
H, W, C = x.shape | |
assert C == 1 or C == 3 or C == 4 | |
if C == 3: | |
return x | |
if C == 1: | |
return np.concatenate([x, x, x], axis=2) | |
if C == 4: | |
color = x[:, :, 0:3].astype(np.float32) | |
alpha = x[:, :, 3:4].astype(np.float32) / 255.0 | |
y = color * alpha + 255.0 * (1.0 - alpha) | |
y = y.clip(0, 255).astype(np.uint8) | |
return y | |
DESCRIPTION = '''# Scribble SDXL 🖋️🌄 | |
sketch to image with SDXL, using [@xinsir](https://huggingface.co/xinsir) [scribble sdxl controlnet](https://huggingface.co/xinsir/controlnet-scribble-sdxl-1.0), [sdxl controlnet canny](https://huggingface.co/xinsir/controlnet-canny-sdxl-1.0) | |
''' | |
if not torch.cuda.is_available(): | |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>" | |
style_list = [ | |
{ | |
"name": "(No style)", | |
"prompt": "{prompt}", | |
"negative_prompt": "longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality", | |
}, | |
{ | |
"name": "Cinematic", | |
"prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy", | |
"negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured", | |
}, | |
{ | |
"name": "3D Model", | |
"prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting", | |
"negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting", | |
}, | |
{ | |
"name": "Anime", | |
"prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed", | |
"negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast", | |
}, | |
{ | |
"name": "Digital Art", | |
"prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed", | |
"negative_prompt": "photo, photorealistic, realism, ugly", | |
}, | |
{ | |
"name": "Photographic", | |
"prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed", | |
"negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly", | |
}, | |
{ | |
"name": "Pixel art", | |
"prompt": "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics", | |
"negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic", | |
}, | |
{ | |
"name": "Fantasy art", | |
"prompt": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy", | |
"negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white", | |
}, | |
{ | |
"name": "Neonpunk", | |
"prompt": "neonpunk style {prompt} . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional", | |
"negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured", | |
}, | |
{ | |
"name": "Manga", | |
"prompt": "manga style {prompt} . vibrant, high-energy, detailed, iconic, Japanese comic style", | |
"negative_prompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, Western comic style", | |
}, | |
] | |
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list} | |
STYLE_NAMES = list(styles.keys()) | |
DEFAULT_STYLE_NAME = "(No style)" | |
def apply_style(style_name: str, positive: str, negative: str = "") -> tuple[str, str]: | |
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME]) | |
return p.replace("{prompt}", positive), n + negative | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
eulera_scheduler = EulerAncestralDiscreteScheduler.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="scheduler") | |
controlnet = ControlNetModel.from_pretrained( | |
"xinsir/controlnet-scribble-sdxl-1.0", | |
torch_dtype=torch.float16 | |
) | |
controlnet_canny = ControlNetModel.from_pretrained( | |
"xinsir/controlnet-canny-sdxl-1.0", | |
torch_dtype=torch.float16 | |
) | |
# when test with other base model, you need to change the vae also. | |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) | |
pipe = StableDiffusionXLControlNetPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-xl-base-1.0", | |
controlnet=controlnet, | |
vae=vae, | |
torch_dtype=torch.float16, | |
scheduler=eulera_scheduler, | |
) | |
pipe.to(device) | |
# Load model. | |
pipe_canny = StableDiffusionXLControlNetPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-xl-base-1.0", | |
controlnet=controlnet_canny, | |
vae=vae, | |
safety_checker=None, | |
torch_dtype=torch.float16, | |
scheduler=eulera_scheduler, | |
) | |
pipe_canny.to(device) | |
MAX_IMAGE_PIXELS = 100000000 # Adjust if needed. | |
def resize_image(image, max_pixels=MAX_IMAGE_PIXELS): | |
"""Resize an image to have at most max_pixels, maintaining aspect ratio.""" | |
width, height = image.size | |
if width * height > max_pixels: | |
scale_factor = (max_pixels / (width * height)) ** 0.5 | |
new_size = (int(width * scale_factor), int(height * scale_factor)) | |
return image.resize(new_size, Image.ANTIALIAS) | |
return image | |
def process(image, prompt, style, detector_name): | |
# Convert image to RGB mode if it's not already | |
if image.mode != 'RGB': | |
image = image.convert('RGB') | |
image = resize_image(image) | |
width, height = image.size | |
prompt, negative_prompt = apply_style(style, prompt) | |
if detector_name == "hed": | |
image = HWC3(np.array(image, dtype=np.uint8)) | |
with torch.no_grad(): | |
detected_map = hed(image, scribble=True) | |
detected_map = HWC3(detected_map) | |
image = Image.fromarray(detected_map) | |
images = pipe(prompt, negative_prompt=negative_prompt, image=image, height=height, width=width).images | |
return images[0] | |
elif detector_name == "scribble": | |
image = HWC3(np.array(image, dtype=np.uint8)) | |
with torch.no_grad(): | |
detected_map = nms(image, 127, 3.0) | |
detected_map = HWC3(detected_map) | |
image = Image.fromarray(detected_map) | |
images = pipe(prompt, negative_prompt=negative_prompt, image=image, height=height, width=width).images | |
return images[0] | |
elif detector_name == "canny": | |
image = np.array(image, dtype=np.uint8) | |
image = cv2.Canny(image, 100, 200) | |
image = image[:, :, None] | |
image = np.concatenate([image, image, image], axis=2) | |
detected_map = image | |
image = Image.fromarray(detected_map) | |
images = pipe_canny(prompt, negative_prompt=negative_prompt, image=image, height=height, width=width).images | |
return images[0] | |
block_css = ( | |
code := """ | |
#image_upload { | |
height: 100% !important; | |
} | |
#prompt_input { | |
height: 100% !important; | |
} | |
#select_style { | |
height: 100% !important; | |
} | |
#detect_method { | |
height: 100% !important; | |
} | |
#submit_button { | |
height: 100% !important; | |
} | |
""" | |
) | |
def create_demo(): | |
"""Create Gradio demo.""" | |
with gr.Blocks(css=block_css) as demo: | |
gr.Markdown(DESCRIPTION) | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(source='upload', elem_id="image_upload", tool='editor', type="pil") | |
prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt", elem_id="prompt_input") | |
style = gr.Dropdown(STYLE_NAMES, value=DEFAULT_STYLE_NAME, label="Select style", elem_id="select_style") | |
detect_method = gr.Dropdown(choices=["scribble", "hed", "canny"], value="scribble", label="Select Detect Method", elem_id="detect_method") | |
submit_btn = gr.Button("Generate", elem_id="submit_button") | |
with gr.Column(): | |
gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery").style(grid=2, height="auto") | |
submit_btn.click(process, inputs=[input_image, prompt, style, detect_method], outputs=[gallery]) | |
# Refresh button to apply the dark theme | |
refresh_btn = gr.Button("Refresh for Dark Theme") | |
refresh_btn.click(None, None, None, _js=js_func) | |
return demo | |
hed = HEDdetector.from_pretrained('lllyasviel/ControlNet') | |
if __name__ == "__main__": | |
demo = create_demo() | |
demo.launch(debug=True) | |