Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
|
3 |
+
import os
|
4 |
+
import gradio as gr
|
5 |
+
import requests
|
6 |
+
import json
|
7 |
+
import time
|
8 |
+
import base64
|
9 |
+
import google.auth
|
10 |
+
import google.auth.transport.requests
|
11 |
+
from huggingface_hub import login
|
12 |
+
|
13 |
+
# --- 1. Configuration and Authentication ---
|
14 |
+
|
15 |
+
# IMPORTANT: Replace with your Google Cloud Project ID
|
16 |
+
GCP_PROJECT_ID = "gen-lang-client-0193353123"
|
17 |
+
GCP_LOCATION = "us-central1"
|
18 |
+
MODEL_ID = "veo-3.0-generate-preview"
|
19 |
+
API_ENDPOINT = f"{GCP_LOCATION}-aiplatform.googleapis.com"
|
20 |
+
PREDICT_URL = f"https://{API_ENDPOINT}/v1/projects/{GCP_PROJECT_ID}/locations/{GCP_LOCATION}/publishers/google/models/{MODEL_ID}:predictLongRunning"
|
21 |
+
FETCH_URL = f"https://{API_ENDPOINT}/v1/projects/{GCP_PROJECT_ID}/locations/{GCP_LOCATION}/publishers/google/models/{MODEL_ID}:fetchPredictOperation"
|
22 |
+
|
23 |
+
|
24 |
+
# --- Authentication Block ---
|
25 |
+
|
26 |
+
# Part A: Hugging Face Hub Authentication (NEW)
|
27 |
+
# This section looks for a secret named 'HF_TOKEN' to log into the Hub.
|
28 |
+
hf_token = os.environ.get("HF_TOKEN")
|
29 |
+
if hf_token:
|
30 |
+
print("Hugging Face token found. Logging in.")
|
31 |
+
login(token=hf_token)
|
32 |
+
else:
|
33 |
+
print("WARNING: Hugging Face token ('HF_TOKEN') not found. Hub-related features may be disabled.")
|
34 |
+
|
35 |
+
|
36 |
+
# Part B: Google Cloud Authentication (Unchanged)
|
37 |
+
# This section expects a secret named 'GOOGLE_APPLICATION_CREDENTIALS_JSON'
|
38 |
+
creds_json_str = os.environ.get("GOOGLE_APPLICATION_CREDENTIALS_JSON")
|
39 |
+
if not creds_json_str:
|
40 |
+
print("FATAL: 'GOOGLE_APPLICATION_CREDENTIALS_JSON' secret not found. App cannot authenticate with Google Cloud.")
|
41 |
+
# Define a dummy function to show an error in the UI
|
42 |
+
def generate_video(prompt):
|
43 |
+
raise gr.Error("Authentication failed. Server is missing Google Cloud credentials. Please check the Hugging Face Space secrets.")
|
44 |
+
else:
|
45 |
+
with open("gcp_creds.json", "w") as f:
|
46 |
+
f.write(creds_json_str)
|
47 |
+
|
48 |
+
SCOPES = ["https://www.googleapis.com/auth/cloud-platform"]
|
49 |
+
credentials, _ = google.auth.load_credentials_from_file("gcp_creds.json", scopes=SCOPES)
|
50 |
+
print("GCP credentials loaded successfully.")
|
51 |
+
|
52 |
+
|
53 |
+
def get_access_token():
|
54 |
+
"""Generates a fresh short-lived access token for Google Cloud."""
|
55 |
+
auth_req = google.auth.transport.requests.Request()
|
56 |
+
credentials.refresh(auth_req)
|
57 |
+
return credentials.token
|
58 |
+
|
59 |
+
# --- 2. Core Video Generation Logic (Unchanged) ---
|
60 |
+
|
61 |
+
def generate_video(prompt: str):
|
62 |
+
"""
|
63 |
+
The main function to generate a video. It submits, polls, and returns the result.
|
64 |
+
"""
|
65 |
+
if not prompt:
|
66 |
+
raise gr.Error("Prompt cannot be empty.")
|
67 |
+
|
68 |
+
yield "Status: Authenticating and submitting job...", None
|
69 |
+
|
70 |
+
try:
|
71 |
+
access_token = get_access_token()
|
72 |
+
headers = {
|
73 |
+
"Authorization": f"Bearer {access_token}",
|
74 |
+
"Content-Type": "application/json",
|
75 |
+
}
|
76 |
+
|
77 |
+
# --- Step A: Submit the long-running prediction job ---
|
78 |
+
payload = {
|
79 |
+
"instances": [{"prompt": prompt}],
|
80 |
+
"parameters": {
|
81 |
+
"aspectRatio": "16:9",
|
82 |
+
"sampleCount": 1,
|
83 |
+
"durationSeconds": 8,
|
84 |
+
"personGeneration": "allow_all",
|
85 |
+
"addWatermark": True,
|
86 |
+
"includeRaiReason": True,
|
87 |
+
"generateAudio": True,
|
88 |
+
}
|
89 |
+
}
|
90 |
+
|
91 |
+
response = requests.post(PREDICT_URL, headers=headers, json=payload)
|
92 |
+
response.raise_for_status()
|
93 |
+
|
94 |
+
operation_name = response.json()["name"]
|
95 |
+
print(f"Successfully submitted job. Operation Name: {operation_name}")
|
96 |
+
|
97 |
+
# --- Step B: Poll for the result ---
|
98 |
+
MAX_POLL_ATTEMPTS = 60
|
99 |
+
for i in range(MAX_POLL_ATTEMPTS):
|
100 |
+
status_message = f"Status: Job submitted. Polling for result (Attempt {i+1}/{MAX_POLL_ATTEMPTS})... Please wait."
|
101 |
+
yield status_message, None
|
102 |
+
|
103 |
+
access_token = get_access_token()
|
104 |
+
headers["Authorization"] = f"Bearer {access_token}"
|
105 |
+
|
106 |
+
fetch_payload = {"operationName": operation_name}
|
107 |
+
poll_response = requests.post(FETCH_URL, headers=headers, json=fetch_payload)
|
108 |
+
poll_response.raise_for_status()
|
109 |
+
|
110 |
+
poll_result = poll_response.json()
|
111 |
+
|
112 |
+
if poll_result.get("done"):
|
113 |
+
print("Job finished successfully.")
|
114 |
+
video_base64 = poll_result["response"]["predictions"][0]["bytesBase64Encoded"]
|
115 |
+
video_bytes = base64.b64decode(video_base64)
|
116 |
+
|
117 |
+
temp_video_path = "generated_video.mp4"
|
118 |
+
with open(temp_video_path, "wb") as f:
|
119 |
+
f.write(video_bytes)
|
120 |
+
|
121 |
+
yield "Status: Done!", temp_video_path
|
122 |
+
return
|
123 |
+
|
124 |
+
time.sleep(10)
|
125 |
+
|
126 |
+
raise gr.Error("Operation timed out after several minutes. The job may have failed or is taking too long.")
|
127 |
+
|
128 |
+
except requests.exceptions.HTTPError as e:
|
129 |
+
print(f"HTTP Error: {e.response.text}")
|
130 |
+
raise gr.Error(f"API Error: {e.response.status_code}. Details: {e.response.text}")
|
131 |
+
except Exception as e:
|
132 |
+
print(f"An unexpected error occurred: {e}")
|
133 |
+
raise gr.Error(f"An unexpected error occurred: {str(e)}")
|
134 |
+
|
135 |
+
|
136 |
+
# --- 3. Gradio User Interface (Unchanged) ---
|
137 |
+
|
138 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
139 |
+
gr.Markdown("# 🎬 Vertex AI VEO Video Generator")
|
140 |
+
gr.Markdown(
|
141 |
+
"Generate short videos from a text prompt using Google's VEO model. "
|
142 |
+
"Generation can take several minutes. Please be patient."
|
143 |
+
)
|
144 |
+
|
145 |
+
with gr.Row():
|
146 |
+
with gr.Column(scale=1):
|
147 |
+
prompt_input = gr.Textbox(
|
148 |
+
label="Prompt",
|
149 |
+
placeholder="A majestic lion roaming the savanna at sunrise, cinematic 4K.",
|
150 |
+
lines=3
|
151 |
+
)
|
152 |
+
submit_button = gr.Button("Generate Video", variant="primary")
|
153 |
+
|
154 |
+
with gr.Column(scale=1):
|
155 |
+
status_output = gr.Markdown("Status: Ready")
|
156 |
+
video_output = gr.Video(label="Generated Video", interactive=False)
|
157 |
+
|
158 |
+
gr.Examples(
|
159 |
+
examples=[
|
160 |
+
"A high-speed drone shot flying through a futuristic city with flying vehicles.",
|
161 |
+
"A raccoon happily eating popcorn in a movie theater, cinematic lighting.",
|
162 |
+
"A beautiful time-lapse of a flower blooming, from bud to full blossom, ultra-realistic.",
|
163 |
+
],
|
164 |
+
inputs=prompt_input,
|
165 |
+
)
|
166 |
+
|
167 |
+
submit_button.click(
|
168 |
+
fn=generate_video,
|
169 |
+
inputs=prompt_input,
|
170 |
+
outputs=[status_output, video_output]
|
171 |
+
)
|
172 |
+
|
173 |
+
demo.launch()
|