# import os | |
# import logging | |
# from dotenv import load_dotenv | |
# import streamlit as st | |
# from PyPDF2 import PdfReader | |
# from langchain.text_splitter import CharacterTextSplitter | |
# # from langchain.embeddings import HuggingFaceInstructEmbeddings | |
# from langchain_cohere import CohereEmbeddings | |
# from langchain.vectorstores import FAISS | |
# from langchain.memory import ConversationBufferMemory | |
# from langchain.chains import ConversationalRetrievalChain | |
# # from langchain.llms import Ollama | |
# from langchain_groq import ChatGroq | |
# # Load environment variables | |
# load_dotenv() | |
# # Set up logging | |
# logging.basicConfig( | |
# level=logging.INFO, | |
# format='%(asctime)s - %(levelname)s - %(message)s' | |
# ) | |
# # Function to extract text from PDF files | |
# def get_pdf_text(pdf_docs): | |
# text = "" | |
# for pdf in pdf_docs: | |
# pdf_reader = PdfReader(pdf) | |
# for page in pdf_reader.pages: | |
# text += page.extract_text() | |
# return text | |
# # Function to split the extracted text into chunks | |
# def get_text_chunks(text): | |
# text_splitter = CharacterTextSplitter( | |
# separator="\n", | |
# chunk_size=1000, | |
# chunk_overlap=200, | |
# length_function=len | |
# ) | |
# chunks = text_splitter.split_text(text) | |
# return chunks | |
# # Function to create a FAISS vectorstore | |
# # def get_vectorstore(text_chunks): | |
# # embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl") | |
# # vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) | |
# # return vectorstore | |
# def get_vectorstore(text_chunks): | |
# cohere_api_key = os.getenv("COHERE_API_KEY") | |
# embeddings = CohereEmbeddings(model="embed-english-v3.0", cohere_api_key=cohere_api_key) | |
# vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) | |
# return vectorstore | |
# # Function to set up the conversational retrieval chain | |
# def get_conversation_chain(vectorstore): | |
# try: | |
# # llm = Ollama(model="llama3.2:1b") | |
# llm = ChatGroq(model="llama-3.1-70b-versatile", temperature=0.5) | |
# memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True) | |
# conversation_chain = ConversationalRetrievalChain.from_llm( | |
# llm=llm, | |
# retriever=vectorstore.as_retriever(), | |
# memory=memory | |
# ) | |
# logging.info("Conversation chain created successfully.") | |
# return conversation_chain | |
# except Exception as e: | |
# logging.error(f"Error creating conversation chain: {e}") | |
# st.error("An error occurred while setting up the conversation chain.") | |
# # Handle user input | |
# def handle_userinput(user_question): | |
# if st.session_state.conversation is not None: | |
# response = st.session_state.conversation({'question': user_question}) | |
# st.session_state.chat_history = response['chat_history'] | |
# for i, message in enumerate(st.session_state.chat_history): | |
# if i % 2 == 0: | |
# st.write(f"*User:* {message.content}") | |
# else: | |
# st.write(f"*Bot:* {message.content}") | |
# else: | |
# st.warning("Please process the documents first.") | |
# # Main function to run the Streamlit app | |
# def main(): | |
# load_dotenv() | |
# st.set_page_config(page_title="Chat with multiple PDFs", page_icon=":books:") | |
# if "conversation" not in st.session_state: | |
# st.session_state.conversation = None | |
# if "chat_history" not in st.session_state: | |
# st.session_state.chat_history = None | |
# st.header("Chat with multiple PDFs :books:") | |
# user_question = st.text_input("Ask a question about your documents:") | |
# if user_question: | |
# handle_userinput(user_question) | |
# with st.sidebar: | |
# st.subheader("Your documents") | |
# pdf_docs = st.file_uploader( | |
# "Upload your PDFs here and click on 'Process'", accept_multiple_files=True | |
# ) | |
# if st.button("Process"): | |
# with st.spinner("Processing..."): | |
# raw_text = get_pdf_text(pdf_docs) | |
# text_chunks = get_text_chunks(raw_text) | |
# vectorstore = get_vectorstore(text_chunks) | |
# st.session_state.conversation = get_conversation_chain(vectorstore) | |
# if __name__ == '__main__': | |
# main() | |
import os | |
import logging | |
from dotenv import load_dotenv | |
import streamlit as st | |
from PyPDF2 import PdfReader | |
from docx import Document # Import for handling Word files | |
import io # Import for handling byte streams | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain_cohere import CohereEmbeddings | |
from langchain.vectorstores import FAISS | |
from langchain.memory import ConversationBufferMemory | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain_groq import ChatGroq | |
# Load environment variables | |
load_dotenv() | |
# Set up logging | |
logging.basicConfig( | |
level=logging.INFO, | |
format='%(asctime)s - %(levelname)s - %(message)s' | |
) | |
# Function to extract text from PDF files | |
def get_pdf_text(pdf_docs): | |
text = "" | |
for pdf in pdf_docs: | |
pdf_reader = PdfReader(pdf) | |
for page in pdf_reader.pages: | |
text += page.extract_text() | |
return text | |
# Function to extract text from Word files | |
def get_word_text(word_docs): | |
text = "" | |
for word in word_docs: | |
doc = Document(io.BytesIO(word.read())) # Read the Word document from bytes | |
for para in doc.paragraphs: | |
text += para.text + "\n" # Append each paragraph followed by a newline | |
return text | |
# Function to extract text from TXT files | |
def get_txt_text(txt_docs): | |
text = "" | |
for txt in txt_docs: | |
text += txt.read().decode("utf-8") + "\n" # Read and decode the text file content | |
return text | |
# Function to split the extracted text into chunks | |
def get_text_chunks(text): | |
text_splitter = CharacterTextSplitter( | |
separator="\n", | |
chunk_size=1000, | |
chunk_overlap=200, | |
length_function=len | |
) | |
chunks = text_splitter.split_text(text) | |
return chunks | |
def get_vectorstore(text_chunks): | |
cohere_api_key = os.getenv("COHERE_API_KEY") | |
embeddings = CohereEmbeddings(model="embed-english-v3.0", cohere_api_key=cohere_api_key) | |
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) | |
return vectorstore | |
# Function to set up the conversational retrieval chain | |
def get_conversation_chain(vectorstore): | |
try: | |
llm = ChatGroq(model="llama-3.1-70b-versatile", temperature=0.5) | |
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True) | |
conversation_chain = ConversationalRetrievalChain.from_llm( | |
llm=llm, | |
retriever=vectorstore.as_retriever(), | |
memory=memory | |
) | |
logging.info("Conversation chain created successfully.") | |
return conversation_chain | |
except Exception as e: | |
logging.error(f"Error creating conversation chain: {e}") | |
st.error("An error occurred while setting up the conversation chain.") | |
# Handle user input | |
def handle_userinput(user_question): | |
if st.session_state.conversation is not None: | |
response = st.session_state.conversation({'question': user_question}) | |
st.session_state.chat_history = response['chat_history'] | |
for i, message in enumerate(st.session_state.chat_history): | |
if i % 2 == 0: | |
st.write(f"*User:* {message.content}") | |
else: | |
st.write(f"*Bot:* {message.content}") | |
else: | |
st.warning("Please process the documents first.") | |
# Main function to run the Streamlit app | |
def main(): | |
load_dotenv() | |
st.set_page_config(page_title="Chat with multiple documents", page_icon=":books:") | |
if "conversation" not in st.session_state: | |
st.session_state.conversation = None | |
if "chat_history" not in st.session_state: | |
st.session_state.chat_history = None | |
st.header("Chat with multiple documents :books:") | |
user_question = st.text_input("Ask a question about your documents:") | |
if user_question: | |
handle_userinput(user_question) | |
with st.sidebar: | |
st.subheader("Your documents") | |
pdf_docs = st.file_uploader( | |
"Upload your PDFs here", accept_multiple_files=True, type=["pdf"] | |
) | |
word_docs = st.file_uploader( | |
"Upload your Word documents here", accept_multiple_files=True, type=["docx"] | |
) | |
txt_docs = st.file_uploader( | |
"Upload your TXT files here", accept_multiple_files=True, type=["txt"] | |
) | |
if st.button("Process"): | |
with st.spinner("Processing..."): | |
raw_text = "" | |
if pdf_docs: | |
raw_text += get_pdf_text(pdf_docs) | |
if word_docs: | |
raw_text += get_word_text(word_docs) | |
if txt_docs: | |
raw_text += get_txt_text(txt_docs) | |
if raw_text: # Only process if there is any raw text extracted. | |
text_chunks = get_text_chunks(raw_text) | |
vectorstore = get_vectorstore(text_chunks) | |
st.session_state.conversation = get_conversation_chain(vectorstore) | |
else: | |
st.warning("No documents were uploaded or processed.") | |
if __name__ == '__main__': | |
main() | |