Update app.py
Browse files
app.py
CHANGED
@@ -1,117 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
-
import logging
|
3 |
from dotenv import load_dotenv
|
4 |
-
import
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
8 |
from langchain_cohere import CohereEmbeddings
|
9 |
-
from langchain.vectorstores import FAISS
|
10 |
-
from langchain.memory import ConversationBufferMemory
|
11 |
-
from langchain.chains import ConversationalRetrievalChain
|
12 |
-
# from langchain.llms import Ollama
|
13 |
-
from langchain_groq import ChatGroq
|
14 |
|
15 |
# Load environment variables
|
16 |
load_dotenv()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
#
|
19 |
-
|
20 |
-
level=logging.INFO,
|
21 |
-
format='%(asctime)s - %(levelname)s - %(message)s'
|
22 |
-
)
|
23 |
|
24 |
-
|
25 |
-
|
|
|
26 |
text = ""
|
27 |
-
for
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
# Function to split the extracted text into chunks
|
34 |
-
def get_text_chunks(text):
|
35 |
-
text_splitter = CharacterTextSplitter(
|
36 |
-
separator="\n",
|
37 |
chunk_size=1000,
|
38 |
-
chunk_overlap=200
|
39 |
-
length_function=len
|
40 |
)
|
41 |
chunks = text_splitter.split_text(text)
|
42 |
-
return chunks
|
43 |
|
44 |
-
#
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
if __name__ == '__main__':
|
117 |
-
main()
|
|
|
1 |
+
# import os
|
2 |
+
# import logging
|
3 |
+
# from dotenv import load_dotenv
|
4 |
+
# import streamlit as st
|
5 |
+
# from PyPDF2 import PdfReader
|
6 |
+
# from langchain.text_splitter import CharacterTextSplitter
|
7 |
+
# # from langchain.embeddings import HuggingFaceInstructEmbeddings
|
8 |
+
# from langchain_cohere import CohereEmbeddings
|
9 |
+
# from langchain.vectorstores import FAISS
|
10 |
+
# from langchain.memory import ConversationBufferMemory
|
11 |
+
# from langchain.chains import ConversationalRetrievalChain
|
12 |
+
# # from langchain.llms import Ollama
|
13 |
+
# from langchain_groq import ChatGroq
|
14 |
+
|
15 |
+
# # Load environment variables
|
16 |
+
# load_dotenv()
|
17 |
+
|
18 |
+
# # Set up logging
|
19 |
+
# logging.basicConfig(
|
20 |
+
# level=logging.INFO,
|
21 |
+
# format='%(asctime)s - %(levelname)s - %(message)s'
|
22 |
+
# )
|
23 |
+
|
24 |
+
# # Function to extract text from PDF files
|
25 |
+
# def get_pdf_text(pdf_docs):
|
26 |
+
# text = ""
|
27 |
+
# for pdf in pdf_docs:
|
28 |
+
# pdf_reader = PdfReader(pdf)
|
29 |
+
# for page in pdf_reader.pages:
|
30 |
+
# text += page.extract_text()
|
31 |
+
# return text
|
32 |
+
|
33 |
+
# # Function to split the extracted text into chunks
|
34 |
+
# def get_text_chunks(text):
|
35 |
+
# text_splitter = CharacterTextSplitter(
|
36 |
+
# separator="\n",
|
37 |
+
# chunk_size=1000,
|
38 |
+
# chunk_overlap=200,
|
39 |
+
# length_function=len
|
40 |
+
# )
|
41 |
+
# chunks = text_splitter.split_text(text)
|
42 |
+
# return chunks
|
43 |
+
|
44 |
+
# # Function to create a FAISS vectorstore
|
45 |
+
# # def get_vectorstore(text_chunks):
|
46 |
+
# # embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
|
47 |
+
# # vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
|
48 |
+
# # return vectorstore
|
49 |
+
|
50 |
+
# def get_vectorstore(text_chunks):
|
51 |
+
# cohere_api_key = os.getenv("COHERE_API_KEY")
|
52 |
+
# embeddings = CohereEmbeddings(model="embed-english-v3.0", cohere_api_key=cohere_api_key)
|
53 |
+
# vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
|
54 |
+
# return vectorstore
|
55 |
+
|
56 |
+
# # Function to set up the conversational retrieval chain
|
57 |
+
# def get_conversation_chain(vectorstore):
|
58 |
+
# try:
|
59 |
+
# # llm = Ollama(model="llama3.2:1b")
|
60 |
+
# llm = ChatGroq(model="llama-3.3-70b-versatile", temperature=0.5)
|
61 |
+
# memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
|
62 |
+
|
63 |
+
# conversation_chain = ConversationalRetrievalChain.from_llm(
|
64 |
+
# llm=llm,
|
65 |
+
# retriever=vectorstore.as_retriever(),
|
66 |
+
# memory=memory
|
67 |
+
# )
|
68 |
+
|
69 |
+
# logging.info("Conversation chain created successfully.")
|
70 |
+
# return conversation_chain
|
71 |
+
# except Exception as e:
|
72 |
+
# logging.error(f"Error creating conversation chain: {e}")
|
73 |
+
# st.error("An error occurred while setting up the conversation chain.")
|
74 |
+
|
75 |
+
# # Handle user input
|
76 |
+
# def handle_userinput(user_question):
|
77 |
+
# if st.session_state.conversation is not None:
|
78 |
+
# response = st.session_state.conversation({'question': user_question})
|
79 |
+
# st.session_state.chat_history = response['chat_history']
|
80 |
+
|
81 |
+
# for i, message in enumerate(st.session_state.chat_history):
|
82 |
+
# if i % 2 == 0:
|
83 |
+
# st.write(f"*User:* {message.content}")
|
84 |
+
# else:
|
85 |
+
# st.write(f"*Bot:* {message.content}")
|
86 |
+
# else:
|
87 |
+
# st.warning("Please process the documents first.")
|
88 |
+
|
89 |
+
# # Main function to run the Streamlit app
|
90 |
+
# def main():
|
91 |
+
# load_dotenv()
|
92 |
+
# st.set_page_config(page_title="Chat with multiple PDFs", page_icon=":books:")
|
93 |
+
|
94 |
+
# if "conversation" not in st.session_state:
|
95 |
+
# st.session_state.conversation = None
|
96 |
+
# if "chat_history" not in st.session_state:
|
97 |
+
# st.session_state.chat_history = None
|
98 |
+
|
99 |
+
# st.header("Chat with multiple PDFs :books:")
|
100 |
+
# user_question = st.text_input("Ask a question about your documents:")
|
101 |
+
# if user_question:
|
102 |
+
# handle_userinput(user_question)
|
103 |
+
|
104 |
+
# with st.sidebar:
|
105 |
+
# st.subheader("Your documents")
|
106 |
+
# pdf_docs = st.file_uploader(
|
107 |
+
# "Upload your PDFs here and click on 'Process'", accept_multiple_files=True
|
108 |
+
# )
|
109 |
+
# if st.button("Process"):
|
110 |
+
# with st.spinner("Processing..."):
|
111 |
+
# raw_text = get_pdf_text(pdf_docs)
|
112 |
+
# text_chunks = get_text_chunks(raw_text)
|
113 |
+
# vectorstore = get_vectorstore(text_chunks)
|
114 |
+
# st.session_state.conversation = get_conversation_chain(vectorstore)
|
115 |
+
|
116 |
+
# if __name__ == '__main__':
|
117 |
+
# main()
|
118 |
+
|
119 |
+
|
120 |
+
|
121 |
+
|
122 |
+
|
123 |
+
|
124 |
+
|
125 |
+
import streamlit as st
|
126 |
import os
|
|
|
127 |
from dotenv import load_dotenv
|
128 |
+
import PyPDF2
|
129 |
+
import requests
|
130 |
+
import cohere
|
131 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
132 |
+
from langchain_community.vectorstores import FAISS
|
133 |
from langchain_cohere import CohereEmbeddings
|
|
|
|
|
|
|
|
|
|
|
134 |
|
135 |
# Load environment variables
|
136 |
load_dotenv()
|
137 |
+
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
|
138 |
+
COHERE_API_KEY = os.getenv("COHERE_API_KEY")
|
139 |
+
|
140 |
+
# Initialize Cohere client
|
141 |
+
co = cohere.Client(COHERE_API_KEY)
|
142 |
+
|
143 |
+
# Configure Streamlit
|
144 |
+
st.set_page_config(page_title="RAG Chatbot with Gemini & Cohere")
|
145 |
+
st.title("🤖 Multi-Model RAG Chatbot")
|
146 |
+
|
147 |
+
# Initialize session state
|
148 |
+
if "messages" not in st.session_state:
|
149 |
+
st.session_state.messages = []
|
150 |
+
if "vector_store" not in st.session_state:
|
151 |
+
st.session_state.vector_store = None
|
152 |
|
153 |
+
# File upload and processing
|
154 |
+
uploaded_file = st.file_uploader("Upload a PDF document", type="pdf")
|
|
|
|
|
|
|
155 |
|
156 |
+
if uploaded_file and not st.session_state.vector_store:
|
157 |
+
# Process PDF
|
158 |
+
pdf_reader = PyPDF2.PdfReader(uploaded_file)
|
159 |
text = ""
|
160 |
+
for page in pdf_reader.pages:
|
161 |
+
text += page.extract_text()
|
162 |
+
|
163 |
+
# Split text
|
164 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
|
|
|
|
|
|
|
|
|
|
165 |
chunk_size=1000,
|
166 |
+
chunk_overlap=200
|
|
|
167 |
)
|
168 |
chunks = text_splitter.split_text(text)
|
|
|
169 |
|
170 |
+
# Create embeddings and vector store
|
171 |
+
embeddings = CohereEmbeddings(
|
172 |
+
cohere_api_key=COHERE_API_KEY,
|
173 |
+
model="embed-english-v3.0",
|
174 |
+
user_agent="rag-chatbot-v1"
|
175 |
+
)
|
176 |
+
st.session_state.vector_store = FAISS.from_texts(
|
177 |
+
texts=chunks,
|
178 |
+
embedding=embeddings
|
179 |
+
)
|
180 |
|
181 |
+
# Display chat messages
|
182 |
+
for message in st.session_state.messages:
|
183 |
+
with st.chat_message(message["role"]):
|
184 |
+
st.markdown(message["content"])
|
185 |
+
|
186 |
+
# Query expansion function
|
187 |
+
def expand_query(query):
|
188 |
+
prompt = f"""Generate 3 query variations that help answer: {query}
|
189 |
+
Format as numbered bullet points:"""
|
190 |
+
|
191 |
+
response = co.generate(
|
192 |
+
prompt=prompt,
|
193 |
+
max_tokens=100,
|
194 |
+
temperature=0.7
|
195 |
+
)
|
196 |
+
expanded_queries = [query] + [q.split(". ")[1] for q in response.generations[0].text.split("\n") if q]
|
197 |
+
return expanded_queries
|
198 |
+
|
199 |
+
# Gemini API call
|
200 |
+
def generate_with_gemini(context, query):
|
201 |
+
url = f"https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key={GEMINI_API_KEY}"
|
202 |
+
|
203 |
+
system_prompt = f"""You're an expert assistant. Use this context to answer:
|
204 |
+
{context}
|
205 |
+
|
206 |
+
Apply Chain of Abstraction and Grounding (CAG):
|
207 |
+
1. Identify key concepts
|
208 |
+
2. Create abstract relationships
|
209 |
+
3. Ground in specific examples
|
210 |
+
4. Synthesize final answer"""
|
211 |
+
|
212 |
+
headers = {"Content-Type": "application/json"}
|
213 |
+
data = {
|
214 |
+
"contents": [{
|
215 |
+
"parts": [{
|
216 |
+
"text": f"{system_prompt}\n\nQuestion: {query}"
|
217 |
+
}]
|
218 |
+
}]
|
219 |
+
}
|
220 |
+
|
221 |
+
response = requests.post(url, json=data, headers=headers)
|
222 |
+
return response.json()["candidates"][0]["content"]["parts"][0]["text"]
|
223 |
+
|
224 |
+
# Chat input
|
225 |
+
if prompt := st.chat_input("Ask about the document"):
|
226 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
227 |
+
|
228 |
+
with st.chat_message("user"):
|
229 |
+
st.markdown(prompt)
|
230 |
+
|
231 |
+
# Query expansion
|
232 |
+
expanded_queries = expand_query(prompt)
|
233 |
+
|
234 |
+
# Retrieve documents
|
235 |
+
docs = []
|
236 |
+
for query in expanded_queries:
|
237 |
+
docs.extend(st.session_state.vector_store.similarity_search(query, k=2))
|
238 |
+
|
239 |
+
# Generate response
|
240 |
+
context = "\n\n".join([doc.page_content for doc in docs])
|
241 |
+
response = generate_with_gemini(context, prompt)
|
242 |
+
|
243 |
+
with st.chat_message("assistant"):
|
244 |
+
st.markdown(response)
|
245 |
+
|
246 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
|
|
|