Update app.py
Browse files
app.py
CHANGED
@@ -1,169 +1,16 @@
|
|
1 |
-
|
2 |
-
# import os
|
3 |
-
# import logging
|
4 |
-
# from dotenv import load_dotenv
|
5 |
-
# import streamlit as st
|
6 |
-
# from PyPDF2 import PdfReader
|
7 |
-
# from langchain.text_splitter import CharacterTextSplitter
|
8 |
-
# # from langchain.embeddings import HuggingFaceInstructEmbeddings
|
9 |
-
# from langchain_cohere import CohereEmbeddings
|
10 |
-
# from langchain.vectorstores import FAISS
|
11 |
-
# from langchain.memory import ConversationBufferMemory
|
12 |
-
# from langchain.chains import ConversationalRetrievalChain
|
13 |
-
# # from langchain.llms import Ollama
|
14 |
-
# from langchain_groq import ChatGroq
|
15 |
-
|
16 |
-
# # Load environment variables
|
17 |
-
# load_dotenv()
|
18 |
-
|
19 |
-
# # Set up logging
|
20 |
-
# logging.basicConfig(
|
21 |
-
# level=logging.INFO,
|
22 |
-
# format='%(asctime)s - %(levelname)s - %(message)s'
|
23 |
-
# )
|
24 |
-
|
25 |
-
# # Function to extract text from PDF files
|
26 |
-
# def get_pdf_text(pdf_docs):
|
27 |
-
# text = ""
|
28 |
-
# for pdf in pdf_docs:
|
29 |
-
# pdf_reader = PdfReader(pdf)
|
30 |
-
# for page in pdf_reader.pages:
|
31 |
-
# text += page.extract_text()
|
32 |
-
# return text
|
33 |
-
|
34 |
-
# # Function to split the extracted text into chunks
|
35 |
-
# def get_text_chunks(text):
|
36 |
-
# text_splitter = CharacterTextSplitter(
|
37 |
-
# separator="\n",
|
38 |
-
# chunk_size=1000,
|
39 |
-
# chunk_overlap=200,
|
40 |
-
# length_function=len
|
41 |
-
# )
|
42 |
-
# chunks = text_splitter.split_text(text)
|
43 |
-
# return chunks
|
44 |
-
|
45 |
-
# # Function to create a FAISS vectorstore
|
46 |
-
# # def get_vectorstore(text_chunks):
|
47 |
-
# # embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
|
48 |
-
# # vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
|
49 |
-
# # return vectorstore
|
50 |
-
|
51 |
-
# def get_vectorstore(text_chunks):
|
52 |
-
# cohere_api_key = os.getenv("COHERE_API_KEY")
|
53 |
-
# embeddings = CohereEmbeddings(model="embed-english-v3.0", cohere_api_key=cohere_api_key)
|
54 |
-
# vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
|
55 |
-
# return vectorstore
|
56 |
-
|
57 |
-
# # Function to set up the conversational retrieval chain
|
58 |
-
# def get_conversation_chain(vectorstore):
|
59 |
-
# try:
|
60 |
-
# # llm = Ollama(model="llama3.2:1b")
|
61 |
-
# llm = ChatGroq(model="llama-3.1-70b-versatile", temperature=0.5)
|
62 |
-
# memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
|
63 |
-
|
64 |
-
# conversation_chain = ConversationalRetrievalChain.from_llm(
|
65 |
-
# llm=llm,
|
66 |
-
# retriever=vectorstore.as_retriever(),
|
67 |
-
# memory=memory
|
68 |
-
# )
|
69 |
-
|
70 |
-
# logging.info("Conversation chain created successfully.")
|
71 |
-
# return conversation_chain
|
72 |
-
# except Exception as e:
|
73 |
-
# logging.error(f"Error creating conversation chain: {e}")
|
74 |
-
# st.error("An error occurred while setting up the conversation chain.")
|
75 |
-
|
76 |
-
# # Handle user input
|
77 |
-
# def handle_userinput(user_question):
|
78 |
-
# if st.session_state.conversation is not None:
|
79 |
-
# response = st.session_state.conversation({'question': user_question})
|
80 |
-
# st.session_state.chat_history = response['chat_history']
|
81 |
-
|
82 |
-
# for i, message in enumerate(st.session_state.chat_history):
|
83 |
-
# if i % 2 == 0:
|
84 |
-
# st.write(f"*User:* {message.content}")
|
85 |
-
# else:
|
86 |
-
# st.write(f"*Bot:* {message.content}")
|
87 |
-
# else:
|
88 |
-
# st.warning("Please process the documents first.")
|
89 |
-
|
90 |
-
# # Main function to run the Streamlit app
|
91 |
-
# def main():
|
92 |
-
# load_dotenv()
|
93 |
-
# st.set_page_config(page_title="Chat with multiple PDFs", page_icon=":books:")
|
94 |
-
|
95 |
-
# if "conversation" not in st.session_state:
|
96 |
-
# st.session_state.conversation = None
|
97 |
-
# if "chat_history" not in st.session_state:
|
98 |
-
# st.session_state.chat_history = None
|
99 |
-
|
100 |
-
# st.header("Chat with multiple PDFs :books:")
|
101 |
-
# user_question = st.text_input("Ask a question about your documents:")
|
102 |
-
# if user_question:
|
103 |
-
# handle_userinput(user_question)
|
104 |
-
|
105 |
-
# with st.sidebar:
|
106 |
-
# st.subheader("Your documents")
|
107 |
-
# pdf_docs = st.file_uploader(
|
108 |
-
# "Upload your PDFs here and click on 'Process'", accept_multiple_files=True
|
109 |
-
# )
|
110 |
-
# if st.button("Process"):
|
111 |
-
# with st.spinner("Processing..."):
|
112 |
-
# raw_text = get_pdf_text(pdf_docs)
|
113 |
-
# text_chunks = get_text_chunks(raw_text)
|
114 |
-
# vectorstore = get_vectorstore(text_chunks)
|
115 |
-
# st.session_state.conversation = get_conversation_chain(vectorstore)
|
116 |
-
|
117 |
-
# if __name__ == '__main__':
|
118 |
-
# main()
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
|
155 |
import os
|
156 |
import logging
|
157 |
from dotenv import load_dotenv
|
158 |
import streamlit as st
|
159 |
from PyPDF2 import PdfReader
|
160 |
-
from docx import Document # Import for handling Word files
|
161 |
-
import io # Import for handling byte streams
|
162 |
from langchain.text_splitter import CharacterTextSplitter
|
|
|
163 |
from langchain_cohere import CohereEmbeddings
|
164 |
from langchain.vectorstores import FAISS
|
165 |
from langchain.memory import ConversationBufferMemory
|
166 |
from langchain.chains import ConversationalRetrievalChain
|
|
|
167 |
from langchain_groq import ChatGroq
|
168 |
|
169 |
# Load environment variables
|
@@ -184,22 +31,6 @@ def get_pdf_text(pdf_docs):
|
|
184 |
text += page.extract_text()
|
185 |
return text
|
186 |
|
187 |
-
# Function to extract text from Word files
|
188 |
-
def get_word_text(word_docs):
|
189 |
-
text = ""
|
190 |
-
for word in word_docs:
|
191 |
-
doc = Document(io.BytesIO(word.read())) # Read the Word document from bytes
|
192 |
-
for para in doc.paragraphs:
|
193 |
-
text += para.text + "\n" # Append each paragraph followed by a newline
|
194 |
-
return text
|
195 |
-
|
196 |
-
# Function to extract text from TXT files
|
197 |
-
def get_txt_text(txt_docs):
|
198 |
-
text = ""
|
199 |
-
for txt in txt_docs:
|
200 |
-
text += txt.read().decode("utf-8") + "\n" # Read and decode the text file content
|
201 |
-
return text
|
202 |
-
|
203 |
# Function to split the extracted text into chunks
|
204 |
def get_text_chunks(text):
|
205 |
text_splitter = CharacterTextSplitter(
|
@@ -211,6 +42,12 @@ def get_text_chunks(text):
|
|
211 |
chunks = text_splitter.split_text(text)
|
212 |
return chunks
|
213 |
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
def get_vectorstore(text_chunks):
|
215 |
cohere_api_key = os.getenv("COHERE_API_KEY")
|
216 |
embeddings = CohereEmbeddings(model="embed-english-v3.0", cohere_api_key=cohere_api_key)
|
@@ -220,6 +57,7 @@ def get_vectorstore(text_chunks):
|
|
220 |
# Function to set up the conversational retrieval chain
|
221 |
def get_conversation_chain(vectorstore):
|
222 |
try:
|
|
|
223 |
llm = ChatGroq(model="llama-3.1-70b-versatile", temperature=0.5)
|
224 |
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
|
225 |
|
@@ -252,54 +90,56 @@ def handle_userinput(user_question):
|
|
252 |
# Main function to run the Streamlit app
|
253 |
def main():
|
254 |
load_dotenv()
|
255 |
-
st.set_page_config(page_title="Chat with multiple
|
256 |
|
257 |
if "conversation" not in st.session_state:
|
258 |
st.session_state.conversation = None
|
259 |
if "chat_history" not in st.session_state:
|
260 |
st.session_state.chat_history = None
|
261 |
|
262 |
-
st.header("Chat with multiple
|
263 |
-
|
264 |
user_question = st.text_input("Ask a question about your documents:")
|
265 |
-
|
266 |
if user_question:
|
267 |
handle_userinput(user_question)
|
268 |
|
269 |
with st.sidebar:
|
270 |
st.subheader("Your documents")
|
271 |
-
|
272 |
pdf_docs = st.file_uploader(
|
273 |
-
"Upload your PDFs here", accept_multiple_files=True
|
274 |
-
)
|
275 |
-
|
276 |
-
word_docs = st.file_uploader(
|
277 |
-
"Upload your Word documents here", accept_multiple_files=True, type=["docx"]
|
278 |
-
)
|
279 |
-
|
280 |
-
txt_docs = st.file_uploader(
|
281 |
-
"Upload your TXT files here", accept_multiple_files=True, type=["txt"]
|
282 |
)
|
283 |
-
|
284 |
if st.button("Process"):
|
285 |
with st.spinner("Processing..."):
|
286 |
-
raw_text =
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
if word_docs:
|
292 |
-
raw_text += get_word_text(word_docs)
|
293 |
-
|
294 |
-
if txt_docs:
|
295 |
-
raw_text += get_txt_text(txt_docs)
|
296 |
-
|
297 |
-
if raw_text: # Only process if there is any raw text extracted.
|
298 |
-
text_chunks = get_text_chunks(raw_text)
|
299 |
-
vectorstore = get_vectorstore(text_chunks)
|
300 |
-
st.session_state.conversation = get_conversation_chain(vectorstore)
|
301 |
-
else:
|
302 |
-
st.warning("No documents were uploaded or processed.")
|
303 |
|
304 |
if __name__ == '__main__':
|
305 |
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
2 |
import os
|
3 |
import logging
|
4 |
from dotenv import load_dotenv
|
5 |
import streamlit as st
|
6 |
from PyPDF2 import PdfReader
|
|
|
|
|
7 |
from langchain.text_splitter import CharacterTextSplitter
|
8 |
+
# from langchain.embeddings import HuggingFaceInstructEmbeddings
|
9 |
from langchain_cohere import CohereEmbeddings
|
10 |
from langchain.vectorstores import FAISS
|
11 |
from langchain.memory import ConversationBufferMemory
|
12 |
from langchain.chains import ConversationalRetrievalChain
|
13 |
+
# from langchain.llms import Ollama
|
14 |
from langchain_groq import ChatGroq
|
15 |
|
16 |
# Load environment variables
|
|
|
31 |
text += page.extract_text()
|
32 |
return text
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
# Function to split the extracted text into chunks
|
35 |
def get_text_chunks(text):
|
36 |
text_splitter = CharacterTextSplitter(
|
|
|
42 |
chunks = text_splitter.split_text(text)
|
43 |
return chunks
|
44 |
|
45 |
+
# Function to create a FAISS vectorstore
|
46 |
+
# def get_vectorstore(text_chunks):
|
47 |
+
# embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
|
48 |
+
# vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
|
49 |
+
# return vectorstore
|
50 |
+
|
51 |
def get_vectorstore(text_chunks):
|
52 |
cohere_api_key = os.getenv("COHERE_API_KEY")
|
53 |
embeddings = CohereEmbeddings(model="embed-english-v3.0", cohere_api_key=cohere_api_key)
|
|
|
57 |
# Function to set up the conversational retrieval chain
|
58 |
def get_conversation_chain(vectorstore):
|
59 |
try:
|
60 |
+
# llm = Ollama(model="llama3.2:1b")
|
61 |
llm = ChatGroq(model="llama-3.1-70b-versatile", temperature=0.5)
|
62 |
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
|
63 |
|
|
|
90 |
# Main function to run the Streamlit app
|
91 |
def main():
|
92 |
load_dotenv()
|
93 |
+
st.set_page_config(page_title="Chat with multiple PDFs", page_icon=":books:")
|
94 |
|
95 |
if "conversation" not in st.session_state:
|
96 |
st.session_state.conversation = None
|
97 |
if "chat_history" not in st.session_state:
|
98 |
st.session_state.chat_history = None
|
99 |
|
100 |
+
st.header("Chat with multiple PDFs :books:")
|
|
|
101 |
user_question = st.text_input("Ask a question about your documents:")
|
|
|
102 |
if user_question:
|
103 |
handle_userinput(user_question)
|
104 |
|
105 |
with st.sidebar:
|
106 |
st.subheader("Your documents")
|
|
|
107 |
pdf_docs = st.file_uploader(
|
108 |
+
"Upload your PDFs here and click on 'Process'", accept_multiple_files=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
)
|
|
|
110 |
if st.button("Process"):
|
111 |
with st.spinner("Processing..."):
|
112 |
+
raw_text = get_pdf_text(pdf_docs)
|
113 |
+
text_chunks = get_text_chunks(raw_text)
|
114 |
+
vectorstore = get_vectorstore(text_chunks)
|
115 |
+
st.session_state.conversation = get_conversation_chain(vectorstore)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
if __name__ == '__main__':
|
118 |
main()
|
119 |
+
|
120 |
+
|
121 |
+
|
122 |
+
|
123 |
+
|
124 |
+
|
125 |
+
|
126 |
+
|
127 |
+
|
128 |
+
|
129 |
+
|
130 |
+
|
131 |
+
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
|
136 |
+
|
137 |
+
|
138 |
+
|
139 |
+
|
140 |
+
|
141 |
+
|
142 |
+
|
143 |
+
|
144 |
+
|
145 |
+
|