Update app.py
Browse files
app.py
CHANGED
@@ -4,15 +4,13 @@ from dotenv import load_dotenv
|
|
4 |
import streamlit as st
|
5 |
from PyPDF2 import PdfReader
|
6 |
from langchain.text_splitter import CharacterTextSplitter
|
|
|
7 |
from langchain_cohere import CohereEmbeddings
|
8 |
-
from
|
9 |
from langchain.memory import ConversationBufferMemory
|
10 |
from langchain.chains import ConversationalRetrievalChain
|
|
|
11 |
from langchain_groq import ChatGroq
|
12 |
-
from langchain_core.docstore import InMemoryDocstore
|
13 |
-
import faiss
|
14 |
-
from uuid import uuid4
|
15 |
-
from langchain_core.documents import Document
|
16 |
|
17 |
# Load environment variables
|
18 |
load_dotenv()
|
@@ -44,30 +42,21 @@ def get_text_chunks(text):
|
|
44 |
return chunks
|
45 |
|
46 |
# Function to create a FAISS vectorstore
|
|
|
|
|
|
|
|
|
|
|
47 |
def get_vectorstore(text_chunks):
|
48 |
cohere_api_key = os.getenv("COHERE_API_KEY")
|
49 |
embeddings = CohereEmbeddings(model="embed-english-v3.0", cohere_api_key=cohere_api_key)
|
50 |
-
|
51 |
-
# Initialize FAISS index
|
52 |
-
embedding_size = len(embeddings.embed_query("sample text"))
|
53 |
-
index = faiss.IndexFlatL2(embedding_size)
|
54 |
-
vectorstore = FAISS(
|
55 |
-
embedding_function=embeddings,
|
56 |
-
index=index,
|
57 |
-
docstore=InMemoryDocstore(),
|
58 |
-
index_to_docstore_id={}
|
59 |
-
)
|
60 |
-
|
61 |
-
# Add documents to the vectorstore
|
62 |
-
documents = [Document(page_content=chunk) for chunk in text_chunks]
|
63 |
-
ids = [str(uuid4()) for _ in documents]
|
64 |
-
vectorstore.add_documents(documents=documents, ids=ids)
|
65 |
-
|
66 |
return vectorstore
|
67 |
|
68 |
# Function to set up the conversational retrieval chain
|
69 |
def get_conversation_chain(vectorstore):
|
70 |
try:
|
|
|
71 |
llm = ChatGroq(model="llama-3.1-70b-versatile", temperature=0.5)
|
72 |
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
|
73 |
|
@@ -125,4 +114,4 @@ def main():
|
|
125 |
st.session_state.conversation = get_conversation_chain(vectorstore)
|
126 |
|
127 |
if __name__ == '__main__':
|
128 |
-
main()
|
|
|
4 |
import streamlit as st
|
5 |
from PyPDF2 import PdfReader
|
6 |
from langchain.text_splitter import CharacterTextSplitter
|
7 |
+
# from langchain.embeddings import HuggingFaceInstructEmbeddings
|
8 |
from langchain_cohere import CohereEmbeddings
|
9 |
+
from langchain.vectorstores import FAISS
|
10 |
from langchain.memory import ConversationBufferMemory
|
11 |
from langchain.chains import ConversationalRetrievalChain
|
12 |
+
# from langchain.llms import Ollama
|
13 |
from langchain_groq import ChatGroq
|
|
|
|
|
|
|
|
|
14 |
|
15 |
# Load environment variables
|
16 |
load_dotenv()
|
|
|
42 |
return chunks
|
43 |
|
44 |
# Function to create a FAISS vectorstore
|
45 |
+
# def get_vectorstore(text_chunks):
|
46 |
+
# embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
|
47 |
+
# vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
|
48 |
+
# return vectorstore
|
49 |
+
|
50 |
def get_vectorstore(text_chunks):
|
51 |
cohere_api_key = os.getenv("COHERE_API_KEY")
|
52 |
embeddings = CohereEmbeddings(model="embed-english-v3.0", cohere_api_key=cohere_api_key)
|
53 |
+
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
return vectorstore
|
55 |
|
56 |
# Function to set up the conversational retrieval chain
|
57 |
def get_conversation_chain(vectorstore):
|
58 |
try:
|
59 |
+
# llm = Ollama(model="llama3.2:1b")
|
60 |
llm = ChatGroq(model="llama-3.1-70b-versatile", temperature=0.5)
|
61 |
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
|
62 |
|
|
|
114 |
st.session_state.conversation = get_conversation_chain(vectorstore)
|
115 |
|
116 |
if __name__ == '__main__':
|
117 |
+
main()
|