Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import os
|
2 |
-
import logging
|
3 |
import time
|
|
|
4 |
from dotenv import load_dotenv
|
5 |
import streamlit as st
|
6 |
from PyPDF2 import PdfReader
|
@@ -40,23 +40,23 @@ def get_text_chunks(text):
|
|
40 |
chunks = text_splitter.split_text(text)
|
41 |
return chunks
|
42 |
|
43 |
-
# Function to create a FAISS vectorstore with
|
44 |
def get_vectorstore(text_chunks):
|
45 |
cohere_api_key = os.getenv("COHERE_API_KEY")
|
46 |
embeddings = CohereEmbeddings(model="embed-english-v3.0", cohere_api_key=cohere_api_key)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
-
# Rate limiting: Ensure no more than 40 requests per minute
|
49 |
-
max_requests_per_minute = 40
|
50 |
-
wait_time = 60 / max_requests_per_minute
|
51 |
-
|
52 |
-
vectorstore = None
|
53 |
-
try:
|
54 |
-
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
|
55 |
-
time.sleep(wait_time) # Sleep to avoid hitting API rate limit
|
56 |
-
except Exception as e:
|
57 |
-
logging.error(f"Error creating vectorstore: {e}")
|
58 |
-
st.error("An error occurred while creating the vectorstore.")
|
59 |
-
|
60 |
return vectorstore
|
61 |
|
62 |
# Function to set up the conversational retrieval chain
|
@@ -64,13 +64,13 @@ def get_conversation_chain(vectorstore):
|
|
64 |
try:
|
65 |
llm = ChatGroq(model="llama-3.1-70b-versatile", temperature=0.5)
|
66 |
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
|
67 |
-
|
68 |
conversation_chain = ConversationalRetrievalChain.from_llm(
|
69 |
llm=llm,
|
70 |
retriever=vectorstore.as_retriever(),
|
71 |
memory=memory
|
72 |
)
|
73 |
-
|
74 |
logging.info("Conversation chain created successfully.")
|
75 |
return conversation_chain
|
76 |
except Exception as e:
|
@@ -103,7 +103,6 @@ def main():
|
|
103 |
|
104 |
st.header("Chat with multiple PDFs :books:")
|
105 |
user_question = st.text_input("Ask a question about your documents:")
|
106 |
-
|
107 |
if user_question:
|
108 |
handle_userinput(user_question)
|
109 |
|
@@ -112,16 +111,12 @@ def main():
|
|
112 |
pdf_docs = st.file_uploader(
|
113 |
"Upload your PDFs here and click on 'Process'", accept_multiple_files=True
|
114 |
)
|
115 |
-
|
116 |
if st.button("Process"):
|
117 |
with st.spinner("Processing..."):
|
118 |
raw_text = get_pdf_text(pdf_docs)
|
119 |
text_chunks = get_text_chunks(raw_text)
|
120 |
vectorstore = get_vectorstore(text_chunks)
|
121 |
-
|
122 |
-
st.session_state.conversation = get_conversation_chain(vectorstore)
|
123 |
|
124 |
if __name__ == '__main__':
|
125 |
main()
|
126 |
-
|
127 |
-
|
|
|
1 |
import os
|
|
|
2 |
import time
|
3 |
+
import logging
|
4 |
from dotenv import load_dotenv
|
5 |
import streamlit as st
|
6 |
from PyPDF2 import PdfReader
|
|
|
40 |
chunks = text_splitter.split_text(text)
|
41 |
return chunks
|
42 |
|
43 |
+
# Function to create a FAISS vectorstore with throttling
|
44 |
def get_vectorstore(text_chunks):
|
45 |
cohere_api_key = os.getenv("COHERE_API_KEY")
|
46 |
embeddings = CohereEmbeddings(model="embed-english-v3.0", cohere_api_key=cohere_api_key)
|
47 |
+
vectorstore = FAISS()
|
48 |
+
|
49 |
+
batch_size = 10 # Number of chunks to process per batch
|
50 |
+
for i in range(0, len(text_chunks), batch_size):
|
51 |
+
batch = text_chunks[i:i + batch_size]
|
52 |
+
try:
|
53 |
+
vectors = embeddings.embed_documents(batch)
|
54 |
+
vectorstore.add_texts(texts=batch, embeddings=vectors)
|
55 |
+
logging.info(f"Processed batch {i // batch_size + 1}")
|
56 |
+
except Exception as e:
|
57 |
+
logging.error(f"Error processing batch {i // batch_size + 1}: {e}")
|
58 |
+
time.sleep(1.5) # Sleep to avoid exceeding rate limit
|
59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
return vectorstore
|
61 |
|
62 |
# Function to set up the conversational retrieval chain
|
|
|
64 |
try:
|
65 |
llm = ChatGroq(model="llama-3.1-70b-versatile", temperature=0.5)
|
66 |
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
|
67 |
+
|
68 |
conversation_chain = ConversationalRetrievalChain.from_llm(
|
69 |
llm=llm,
|
70 |
retriever=vectorstore.as_retriever(),
|
71 |
memory=memory
|
72 |
)
|
73 |
+
|
74 |
logging.info("Conversation chain created successfully.")
|
75 |
return conversation_chain
|
76 |
except Exception as e:
|
|
|
103 |
|
104 |
st.header("Chat with multiple PDFs :books:")
|
105 |
user_question = st.text_input("Ask a question about your documents:")
|
|
|
106 |
if user_question:
|
107 |
handle_userinput(user_question)
|
108 |
|
|
|
111 |
pdf_docs = st.file_uploader(
|
112 |
"Upload your PDFs here and click on 'Process'", accept_multiple_files=True
|
113 |
)
|
|
|
114 |
if st.button("Process"):
|
115 |
with st.spinner("Processing..."):
|
116 |
raw_text = get_pdf_text(pdf_docs)
|
117 |
text_chunks = get_text_chunks(raw_text)
|
118 |
vectorstore = get_vectorstore(text_chunks)
|
119 |
+
st.session_state.conversation = get_conversation_chain(vectorstore)
|
|
|
120 |
|
121 |
if __name__ == '__main__':
|
122 |
main()
|
|
|
|