import os import logging import time from dotenv import load_dotenv import streamlit as st from PyPDF2 import PdfReader from langchain.text_splitter import CharacterTextSplitter from langchain_cohere import CohereEmbeddings from langchain.vectorstores import FAISS from langchain.memory import ConversationBufferMemory from langchain.chains import ConversationalRetrievalChain from langchain_groq import ChatGroq # Load environment variables load_dotenv() # Set up logging logging.basicConfig( level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s" ) # Function to extract text from PDF files def get_pdf_text(pdf_docs): text = "" for pdf in pdf_docs: pdf_reader = PdfReader(pdf) for page in pdf_reader.pages: text += page.extract_text() return text # Function to split the extracted text into chunks def get_text_chunks(text): text_splitter = CharacterTextSplitter( separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len ) chunks = text_splitter.split_text(text) return chunks # Function to create a FAISS vectorstore with rate-limiting and retry logic def get_vectorstore(text_chunks): cohere_api_key = os.getenv("COHERE_API_KEY") embeddings = CohereEmbeddings(model="embed-english-v3.0", cohere_api_key=cohere_api_key) vectorstore = None batch_size = 10 # Process chunks in batches of 10 for i in range(0, len(text_chunks), batch_size): batch = text_chunks[i:i+batch_size] retry_count = 0 while retry_count < 5: # Retry up to 5 times try: if vectorstore is None: vectorstore = FAISS.from_texts(texts=batch, embedding=embeddings) else: vectorstore.add_texts(batch, embedding=embeddings) break # Exit retry loop if successful except Exception as e: if "rate limit" in str(e).lower(): logging.warning(f"Rate limit exceeded. Retrying batch {i//batch_size + 1} in {2 ** retry_count} seconds...") time.sleep(2 ** retry_count) # Exponential backoff retry_count += 1 else: raise e # Raise other errors return vectorstore # Function to set up the conversational retrieval chain def get_conversation_chain(vectorstore): try: llm = ChatGroq(model="llama-3.1-70b-versatile", temperature=0.5) memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) conversation_chain = ConversationalRetrievalChain.from_llm( llm=llm, retriever=vectorstore.as_retriever(), memory=memory ) logging.info("Conversation chain created successfully.") return conversation_chain except Exception as e: logging.error(f"Error creating conversation chain: {e}") st.error("An error occurred while setting up the conversation chain.") # Handle user input def handle_userinput(user_question): if st.session_state.conversation is not None: response = st.session_state.conversation({"question": user_question}) st.session_state.chat_history = response["chat_history"] for i, message in enumerate(st.session_state.chat_history): if i % 2 == 0: st.write(f"*User:* {message.content}") else: st.write(f"*Bot:* {message.content}") else: st.warning("Please process the documents first.") # Main function to run the Streamlit app def main(): load_dotenv() st.set_page_config(page_title="Chat with multiple PDFs", page_icon=":books:") if "conversation" not in st.session_state: st.session_state.conversation = None if "chat_history" not in st.session_state: st.session_state.chat_history = None st.header("Chat with multiple PDFs :books:") user_question = st.text_input("Ask a question about your documents:") if user_question: handle_userinput(user_question) with st.sidebar: st.subheader("Your documents") pdf_docs = st.file_uploader( "Upload your PDFs here and click on 'Process'", accept_multiple_files=True ) if st.button("Process"): with st.spinner("Processing..."): raw_text = get_pdf_text(pdf_docs) text_chunks = get_text_chunks(raw_text) vectorstore = get_vectorstore(text_chunks) st.session_state.conversation = get_conversation_chain(vectorstore) if __name__ == "__main__": main()