File size: 5,365 Bytes
66f237b
8c93eed
7e40962
8c93eed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5e71eb
2f322ce
66f237b
2f322ce
66f237b
 
a5e71eb
66f237b
2f322ce
66f237b
 
 
 
 
 
 
 
 
 
2f322ce
a5e71eb
66f237b
a5e71eb
 
 
 
 
 
 
1d6d0dd
c2a5a36
 
2f322ce
c2a5a36
 
1d6d0dd
c2a5a36
 
1d6d0dd
 
c2a5a36
1d6d0dd
 
c2a5a36
1d6d0dd
 
c2a5a36
1d6d0dd
 
5e62073
 
 
59275a8
c2a5a36
1d6d0dd
 
c2a5a36
a5e71eb
5e62073
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59275a8
5e62073
 
 
 
 
a5e71eb
59275a8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import LatLon from 'geodesy/latlon-spherical.js';
// Haversine-based geodesic interpolator
function generateGeodesicPoints(lat1, lon1, lat2, lon2, numPoints = 512) {
    /**

     * Generates a series of points along the geodesic path between two geographic coordinates, using Haversine function.

        * @returns {Array} An array of points, each represented as [latitude, longitude].

    */
    const toRad = deg => deg * Math.PI / 180;
    const toDeg = rad => rad * 180 / Math.PI;

    const1 = toRad(lat1);
    const1 = toRad(lon1);
    const2 = toRad(lat2);
    const2 = toRad(lon2);

    const 螖 = 2 * Math.asin(
        Math.sqrt(
            Math.sin((蠁2 - 蠁1) / 2) ** 2 +
            Math.cos(蠁1) * Math.cos(蠁2) *
            Math.sin((位2 - 位1) / 2) ** 2
        )
    );

    if (螖 === 0) return [[lat1, lon1]];

    const sin螖 = Math.sin(螖);

    const points = [];

    for (let i = 0; i <= numPoints; i++) {
        const f = i / numPoints;
        const A = Math.sin((1 - f) * 螖) / sin螖;
        const B = Math.sin(f * 螖) / sin螖;

        const x = A * Math.cos(蠁1) * Math.cos(位1) + B * Math.cos(蠁2) * Math.cos(位2);
        const y = A * Math.cos(蠁1) * Math.sin(位1) + B * Math.cos(蠁2) * Math.sin(位2);
        const z = A * Math.sin(蠁1) + B * Math.sin(蠁2);

        const 蠁i = Math.atan2(z, Math.sqrt(x * x + y * y));
        const 位i = Math.atan2(y, x);

        points.push([toDeg(蠁i), toDeg(位i)]);
    }

    return points;
}


function calculatePolygonArea(coords) {
    if (!coords || coords.length < 3) return { area: 0, perimeter: 0 };

    let area = 0;
    let perimeter = 0;

    const latlonPoints = coords.map(c => new LatLon(c[0], c[1]));

    for (let i = 0; i < latlonPoints.length; i++) {
        const p1 = latlonPoints[i];
        const p2 = latlonPoints[(i + 1) % latlonPoints.length];

        perimeter += p1.distanceTo(p2); // in meters
    }

    area = LatLon.areaOf(latlonPoints); // in square meters

    return { "area":area, "perimeter": perimeter };
}


function getPolygonCentroid(points) {
    // Simple centroid calculation for small polygons
    let x = 0, y = 0, n = points.length;
    points.forEach(([lat, lon]) => { x += lat; y += lon; });
    return [x / n, y / n];
}

function formatArea(area, unit = 'sqm', format = "normal") {

    if (typeof area !== 'number' || isNaN(area)) {
        console.log('Invalid area input:', area);
        return 'Invalid area';
    }
    let value;
    switch (unit) {
        case "km2":
            value = area / 1e6;
            return (format === "scientific" ? value.toExponential(2) : value.toLocaleString(undefined, { maximumFractionDigits: 2, minimumFractionDigits: 2 })) + ' km虏';
        case "ha":
            value = area / 1e4;
            return (format === "scientific" ? value.toExponential(2) : value.toLocaleString(undefined, { maximumFractionDigits: 2, minimumFractionDigits: 2 })) + ' ha';
        case "acres":
            value = area / 4046.8564224;
            return (format === "scientific" ? value.toExponential(2) : value.toLocaleString(undefined, { maximumFractionDigits: 2, minimumFractionDigits: 2 })) + ' acres';
        case "mi2":
            value = area / 2589988.110336;
            return (format === "scientific" ? value.toExponential(2) : value.toLocaleString(undefined, { maximumFractionDigits: 2, minimumFractionDigits: 2 })) + ' mi虏';
        case "sqft":
            value = area * 10.76391041671;
            return (format === "scientific" ? value.toExponential(2) : value.toLocaleString(undefined, { maximumFractionDigits: 2, minimumFractionDigits: 2 })) + ' ft虏';
        case "sqm":
        default:
            value = area;
            return (format === "scientific" ? value.toExponential(2) : value.toLocaleString(undefined, { maximumFractionDigits: 2, minimumFractionDigits: 2 })) + ' m虏';
    }
}
function formatPerimeter(perimeter, unit = 'sqm', format = "normal") {
    if (typeof perimeter !== 'number' || isNaN(perimeter)) {
        console.log('Invalid perimeter input:', perimeter);
        return 'Invalid perimeter';
    }
    let value;
    switch (unit) {
        case "km2":
        case "ha":
            value = perimeter / 1000;
            return (format === "scientific" ? value.toExponential(2) : value.toLocaleString(undefined, { maximumFractionDigits: 2, minimumFractionDigits: 2 })) + ' km';
        case "mi2":
            value = perimeter / 1609.344;
            return (format === "scientific" ? value.toExponential(2) : value.toLocaleString(undefined, { maximumFractionDigits: 2, minimumFractionDigits: 2 })) + ' mi';
        case "sqft":
            value = perimeter * 3.280839895013123; // meters to feet
            return (format === "scientific" ? value.toExponential(2) : value.toLocaleString(undefined, { maximumFractionDigits: 2, minimumFractionDigits: 2 })) + ' ft';
        case "m2":
        default:
            value = perimeter;
            return (format === "scientific" ? value.toExponential(2) : value.toLocaleString(undefined, { maximumFractionDigits: 2, minimumFractionDigits: 2 })) + ' m';
    }
}

export {generateGeodesicPoints, calculatePolygonArea, getPolygonCentroid, formatArea, formatPerimeter};