Spaces:
Runtime error
Merge pull request #9 from DebasishDhal/feat/wiki-geosearch
Browse files- Wikipedia api can handle search area of radius <= 1 km
- Used multiple hexagonally arranged 10km circles to fill the larger circle, fetch wiki responses for all of them and use in frontend
- Made Search Radius max limit (both slider and keyboard dynamic)
- Enabled nearby mode map exploration possible with exploration sidebar closed
Render the html content below to see hexagonal circular packing of a 50km circle centered at Bangalore, with 10km circles.
Disadvantage - Assumes spherical earth. And it misses out some points in the gaps.
```
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/leaflet.js"></script>
<script src="https://code.jquery.com/jquery-3.7.1.min.js"></script>
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/js/bootstrap.bundle.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/Leaflet.awesome-markers/2.0.2/leaflet.awesome-markers.js"></script>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/leaflet.css"/>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css"/>
<link rel="stylesheet" href="https://netdna.bootstrapcdn.com/bootstrap/3.0.0/css/bootstrap-glyphicons.css"/>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/@fortawesome/[email protected]/css/all.min.css"/>
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/Leaflet.awesome-markers/2.0.2/leaflet.awesome-markers.css"/>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/gh/python-visualization/folium/folium/templates/leaflet.awesome.rotate.min.css"/>
<meta name="viewport" content="width=device-width,
initial-scale=1.0, maximum-scale=1.0, user-scalable=no" />
<style>
#map_0d8b86cbc8c3d9e67b61e4080646ece2 {
position: relative;
width: 100.0%;
height: 100.0%;
left: 0.0%;
top: 0.0%;
}
.leaflet-container { font-size: 1rem; }
</style>
<style>html, body {
width: 100%;
height: 100%;
margin: 0;
padding: 0;
}
</style>
<style>#map {
position:absolute;
top:0;
bottom:0;
right:0;
left:0;
}
</style>
<script>
L_NO_TOUCH = false;
L_DISABLE_3D = false;
</script>
</head>
<body>
<div class="folium-map" id="map_0d8b86cbc8c3d9e67b61e4080646ece2" ></div>
</body>
<script>
var map_0d8b86cbc8c3d9e67b61e4080646ece2 = L.map(
"map_0d8b86cbc8c3d9e67b61e4080646ece2",
{
center: [12.9716, 77.5946],
crs: L.CRS.EPSG3857,
...{
"zoom": 10,
"zoomControl": true,
"preferCanvas": false,
}
}
);
var tile_layer_5539c953595e8644a534907b01c9b9dd = L.tileLayer(
"https://tile.openstreetmap.org/{z}/{x}/{y}.png",
{
"minZoom": 0,
"maxZoom": 19,
"maxNativeZoom": 19,
"noWrap": false,
"attribution": "\u0026copy; \u003ca href=\"https://www.openstreetmap.org/copyright\"\u003eOpenStreetMap\u003c/a\u003e contributors",
"subdomains": "abc",
"detectRetina": false,
"tms": false,
"opacity": 1,
}
);
tile_layer_5539c953595e8644a534907b01c9b9dd.addTo(map_0d8b86cbc8c3d9e67b61e4080646ece2);
var circle_f1c8f9ae3fe1a67cf46e8338270315f5 = L.circle(
[12.9716, 77.5946],
{"bubblingMouseEvents": true, "color": "blue", "dashArray": null, "dashOffset": null, "fill": true, "fillColor": "blue", "fillOpacity": 0.1, "fillRule": "evenodd", "lineCap": "round", "lineJoin": "round", "opacity": 1.0, "radius": 50000, "stroke": true, "weight": 3}
).addTo(map_0d8b86cbc8c3d9e67b61e4080646ece2);
var popup_52aa2bb8a1b914eaf507be92fd68695e = L.popup({
"maxWidth": "100%",
});
var html_7447c4f769cea93e6ae52ce15cb34a8b = $(`<div id="html_7447c4f769cea93e6ae52ce15cb34a8b" style="width: 100.0%; height: 100.0%;">Target Area</div>`)[0];
popup_52aa2bb8a1b914eaf507be92fd68695e.setContent(html_7447c4f769cea93e6ae52ce15cb34a8b);
circle_f1c8f9ae3fe1a67cf46e8338270315f5.bindPopup(popup_52aa2bb8a1b914eaf507be92fd68695e)
;
var circle_52a6246c4981f1366d92201def7f9cbe = L.circle(
[12.504298785861298, 77.31773841119686],
{"bubblingMouseEvents": true, "color": "red", "dashArray": null, "dashOffset": null, "fill": true, "fillColor": "red", "fillOpacity": 0.2, "fillRule": "evenodd", "lineCap": "round", "lineJoin": "round", "opacity": 1.0, "radius": 10000, "stroke": true, "weight": 3}
).addTo(map_0d8b86cbc8c3d9e67b61e4080646ece2);
var circle_e78eb9cfb4635c517d3e43cf7bd7233a = L.circle(
[12.504298785861298, 77.50231280373228],
{"bubblingMouseEvents": true, "color": "red", "dashArray": null, "dashOffset": null, "fill": true, "fillColor": "red", "fillOpacity": 0.2, "fillRule": "evenodd", "lineCap": "round", "lineJoin": "round", "opacity": 1.0, "radius": 10000, "stroke": true, "weight": 3}
).addTo(map_0d8b86cbc8c3d9e67b61e4080646ece2);
var circle_e4ec44b83736eca64c05417624a37ed8 = L.circle(
[12.504298785861298, 77.68688719626772],
{"bubblingMouseEvents": true, "color": "red", "dashArray": null, "dashOffset": null, "fill": true, "fillColor": "red", "fillOpacity": 0.2, "fillRule": "evenodd", "lineCap": "round", "lineJoin": "round", "opacity": 1.0, "radius": 10000, "stroke": true, "weight": 3}
).addTo(map_0d8b86cbc8c3d9e67b61e4080646ece2);
var circle_caf16f07b56c6f6fd3dc92a0957efc0d = L.circle(
[12.504298785861298, 77.87146158880314],
{"bubblingMouseEvents": true, "color": "red", "dashArray": null, "dashOffset": null, "fill": true, "fillColor": "red", "fillOpacity": 0.2, "fillRule": "evenodd", "lineCap": "round", "lineJoin": "round", "opacity": 1.0, "radius": 10000, "stroke": true, "weight": 3}
).addTo(map_0d8b86cbc8c3d9e67b61e4080646ece2);
var circle_4b75e906a045a46964343af78f5d0829 = L.circle(
[12.660065857240864, 77.22545121492914],
{"bubblingMouseEvents": true, "color": "red", "dashArray": null, "dashOffset": null, "fill": true, "fillColor": "red", "fillOpacity": 0.2, "fillRule": "evenodd", "lineCap": "round", "lineJoin": "round", "opacity": 1.0, "radius": 10000, "stroke": true, "weight": 3}
).addTo(map_0d8b86cbc8c3d9e67b61e4080646ece2);
var circle_dc1305c877ce55a877e1577d4eb6c1ec = L.circle(
[12.660065857240864, 77.41002560746458],
{"bubblingMouseEvents": true, "color": "red", "dashArray": null, "dashOffset": null, "fill": true, "fillColor": "red", "fillOpacity": 0.2, "fillRule": "evenodd", "lineCap": "round", "lineJoin": "round", "opacity": 1.0, "radius": 10000, "stroke": true, "weight": 3}
).addTo(map_0d8b86cbc8c3d9e67b61e4080646ece2);
var circle_c6273fc19f0d6c7c53e11797678a26d7 = L.circle(
[12.660065857240864, 77.5946],
{"bubblingMouseEvents": true, "color": "red", "dashArray": null, "dashOffset": null, "fill": true, "fillColor": "red", "fillOpacity": 0.2, "fillRule": "evenodd", "lineCap": "round", "lineJoin": "round", "opacity": 1.0, "radius": 10000, "stroke": true, "weight": 3}
).addTo(map_0d8b86cbc8c3d9e67b61e4080646ece2);
var circle_72c14238321f382b75d7e7252e099771 = L.circle(
[12.660065857240864, 77.77917439253542],
{"bubblingMouseEvents": true, "color": "red", "dashArray": null, "dashOffset": null, "fill": true, "fillColor": "red", "fillOpacity": 0.2, "fillRule": "evenodd", "lineCap": "round", "lineJoin": "round", "opacity": 1.0, "radius": 10000, "stroke": true, "weight": 3}
).addTo(map_0d8b86cbc8c3d9e67b61e4080646ece2);
var circle_87d8d6d7da9e3dadc2f449b41d2c3283 = L.circle(
[12.660065857240864, 77.96374878507086],
{"bubblingMouseEvents": true, "color": "red", "dashArray": null, "dashOffset": null, "fill": true, "fillColor": "red", "fillOpacity": 0.2, "fillRule": "evenodd", "lineCap": "round", "lineJoin": "round", "opacity": 1.0, "radius": 10000, "stroke": true, "weight": 3}
).addTo(map_0d8b86cbc8c3d9e67b61e4080646ece2);
var circle_73b1316540dab26935b6628bc29e8373 = L.circle(
[12.815832928620432, 77.13316401866143],
{"bubblingMouseEvents": true, "color": "red", "dashArray": null, "dashOffset": null, "fill": true, "fillColor": "red", "fillOpacity": 0.2, "fillRule": "evenodd", "lineCap": "round", "lineJoin": "round", "opacity": 1.0, "radius": 10000, "stroke": true, "weight": 3}
).addTo(map_0d8b86cbc8c3d9e67b61e4080646ece2);
var circle_abbf0ccd94dc3585f29e6097cf31816c = L.circle(
[12.815832928620432, 77.31773841119686],
{"bubblingMouseEvents": true, "color": "red", "dashArray": null, "dashOffset": null, "fill": true, "fillColor": "red", "fillOpacity": 0.2, "fillRule": "evenodd", "lineCap": "round", "lineJoin": "round", "opacity": 1.0, "radius": 10000, "stroke": true, "weight": 3}
).addTo(map_0d8b86cbc8c3d9e67b61e4080646ece2);
var circle_123feae420dca7db7f16836de
- backend/utils.py +43 -0
- frontend/src/components/Map.js +17 -12
- main.py +82 -29
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
def generate_circle_centers(center_lat, center_lon, radius_km, small_radius_km=10):
|
3 |
+
"""
|
4 |
+
Generate a list of centers of small circles (radius=10km) needed to cover a larger circle.
|
5 |
+
Circles are arranged in hexagonal pattern to minimize # of small circles.
|
6 |
+
No overlapping among small circles, but some small circles may be outside the larger circle.
|
7 |
+
Input:
|
8 |
+
- center_lat: Latitude of the center of the larger circle
|
9 |
+
- center_lon: Longitude of the center of the larger circle
|
10 |
+
- radius_km: Radius of the larger circle in kilometers
|
11 |
+
- small_radius_km: Radius of the smaller circles in kilometers (default 15km)
|
12 |
+
|
13 |
+
Output:
|
14 |
+
- A list of tuples, each containing the latitude and longitude of a small circle's center. [(lat1, lon1), (lat2, lon2),...]
|
15 |
+
"""
|
16 |
+
R = 6371 # Earth radius
|
17 |
+
|
18 |
+
dx = 2 * small_radius_km
|
19 |
+
dy = math.sqrt(3) * small_radius_km
|
20 |
+
max_dist = radius_km + small_radius_km
|
21 |
+
|
22 |
+
results = []
|
23 |
+
lat_rad = math.radians(center_lat)
|
24 |
+
n_y = int(max_dist // dy) + 2
|
25 |
+
|
26 |
+
for row in range(-n_y, n_y + 1):
|
27 |
+
y = row * dy
|
28 |
+
offset = 0 if row % 2 == 0 else dx / 2
|
29 |
+
n_x = int((max_dist + dx) // dx) + 2
|
30 |
+
|
31 |
+
for col in range(-n_x, n_x + 1):
|
32 |
+
x = col * dx + offset
|
33 |
+
distance = math.sqrt(x ** 2 + y ** 2)
|
34 |
+
|
35 |
+
if distance <= max_dist:
|
36 |
+
delta_lat = (y / R) * (180 / math.pi)
|
37 |
+
delta_lon = (x / (R * math.cos(lat_rad))) * (180 / math.pi)
|
38 |
+
|
39 |
+
lat = center_lat + delta_lat
|
40 |
+
lon = center_lon + delta_lon
|
41 |
+
results.append((lat, lon))
|
42 |
+
|
43 |
+
return results
|
@@ -26,6 +26,8 @@ L.Icon.Default.mergeOptions({
|
|
26 |
// Add scale
|
27 |
// L.control.scale().addTo(window.Map);
|
28 |
|
|
|
|
|
29 |
const ClickHandler = ({ onClick }) => {
|
30 |
useMapEvents({
|
31 |
click(e) {
|
@@ -83,7 +85,7 @@ const Map = ( { onMapClick, searchQuery, contentType, setSearchQuery, setSubmitt
|
|
83 |
const [countryBorders, setCountryBorders] = useState(null);
|
84 |
|
85 |
const [explorationMode, setExplorationMode] = useState(false);
|
86 |
-
const [explorationRadius, setExplorationRadius] = useState(
|
87 |
const [explorationLimit, setExplorationLimit] = useState(10);
|
88 |
const [explorationMarkers, setExplorationMarkers] = useState([]);
|
89 |
const [explorationSidebarOpen, setExplorationSidebarOpen] = useState(false);
|
@@ -238,14 +240,16 @@ const Map = ( { onMapClick, searchQuery, contentType, setSearchQuery, setSubmitt
|
|
238 |
body: JSON.stringify({
|
239 |
lat: lat,
|
240 |
lon: lon,
|
241 |
-
radius: explorationRadius,
|
242 |
limit: explorationLimit
|
243 |
}),
|
244 |
});
|
245 |
|
246 |
if (res.ok) {
|
247 |
const data = await res.json();
|
248 |
-
const markers = data.pages.
|
|
|
|
|
249 |
position: [page.lat, page.lon],
|
250 |
title: page.title,
|
251 |
distance: page.dist
|
@@ -963,8 +967,9 @@ const Map = ( { onMapClick, searchQuery, contentType, setSearchQuery, setSubmitt
|
|
963 |
<button
|
964 |
onClick={() => {
|
965 |
setExplorationSidebarOpen(false);
|
966 |
-
setExplorationMode(false);
|
967 |
-
setExplorationMarkers([]);
|
|
|
968 |
}}
|
969 |
style={{
|
970 |
background: 'none',
|
@@ -979,12 +984,12 @@ const Map = ( { onMapClick, searchQuery, contentType, setSearchQuery, setSubmitt
|
|
979 |
|
980 |
<div>
|
981 |
<label style={{ fontWeight: 500, marginBottom: 8, display: 'block' }}>
|
982 |
-
Search Radius (
|
983 |
</label>
|
984 |
<input
|
985 |
type="range"
|
986 |
-
min="
|
987 |
-
max=
|
988 |
value={explorationRadius}
|
989 |
onChange={(e) => setExplorationRadius(parseInt(e.target.value))}
|
990 |
style={{ width: '100%' }}
|
@@ -998,12 +1003,12 @@ const Map = ( { onMapClick, searchQuery, contentType, setSearchQuery, setSubmitt
|
|
998 |
}}>
|
999 |
<input
|
1000 |
type="number"
|
1001 |
-
min="
|
1002 |
-
max=
|
1003 |
value={explorationRadius}
|
1004 |
onChange={(e) => {
|
1005 |
const value = parseInt(e.target.value);
|
1006 |
-
if (value >=
|
1007 |
setExplorationRadius(value);
|
1008 |
}
|
1009 |
}}
|
@@ -1015,7 +1020,7 @@ const Map = ( { onMapClick, searchQuery, contentType, setSearchQuery, setSubmitt
|
|
1015 |
textAlign: 'center'
|
1016 |
}}
|
1017 |
/>
|
1018 |
-
<span>
|
1019 |
</div>
|
1020 |
</div>
|
1021 |
|
|
|
26 |
// Add scale
|
27 |
// L.control.scale().addTo(window.Map);
|
28 |
|
29 |
+
const maxExplorationLimit = 50; // kilometers, the maximum amount user can select to explore.
|
30 |
+
|
31 |
const ClickHandler = ({ onClick }) => {
|
32 |
useMapEvents({
|
33 |
click(e) {
|
|
|
85 |
const [countryBorders, setCountryBorders] = useState(null);
|
86 |
|
87 |
const [explorationMode, setExplorationMode] = useState(false);
|
88 |
+
const [explorationRadius, setExplorationRadius] = useState(10);
|
89 |
const [explorationLimit, setExplorationLimit] = useState(10);
|
90 |
const [explorationMarkers, setExplorationMarkers] = useState([]);
|
91 |
const [explorationSidebarOpen, setExplorationSidebarOpen] = useState(false);
|
|
|
240 |
body: JSON.stringify({
|
241 |
lat: lat,
|
242 |
lon: lon,
|
243 |
+
radius: explorationRadius*1000,
|
244 |
limit: explorationLimit
|
245 |
}),
|
246 |
});
|
247 |
|
248 |
if (res.ok) {
|
249 |
const data = await res.json();
|
250 |
+
const markers = data.pages.filter(
|
251 |
+
page => typeof page.dist === "number" && page.dist <= explorationRadius * 1000
|
252 |
+
).map(page => ({
|
253 |
position: [page.lat, page.lon],
|
254 |
title: page.title,
|
255 |
distance: page.dist
|
|
|
967 |
<button
|
968 |
onClick={() => {
|
969 |
setExplorationSidebarOpen(false);
|
970 |
+
// setExplorationMode(false); // even with exp. sidebar closed, you can do exploration normally.
|
971 |
+
// setExplorationMarkers([]);
|
972 |
+
setShouldZoom(false); // If this line is removed, it map automatically zooms after re-opening/closing the exp. sidebar
|
973 |
}}
|
974 |
style={{
|
975 |
background: 'none',
|
|
|
984 |
|
985 |
<div>
|
986 |
<label style={{ fontWeight: 500, marginBottom: 8, display: 'block' }}>
|
987 |
+
Search Radius (km):
|
988 |
</label>
|
989 |
<input
|
990 |
type="range"
|
991 |
+
min="1"
|
992 |
+
max={maxExplorationLimit}
|
993 |
value={explorationRadius}
|
994 |
onChange={(e) => setExplorationRadius(parseInt(e.target.value))}
|
995 |
style={{ width: '100%' }}
|
|
|
1003 |
}}>
|
1004 |
<input
|
1005 |
type="number"
|
1006 |
+
min="1"
|
1007 |
+
max={maxExplorationLimit}
|
1008 |
value={explorationRadius}
|
1009 |
onChange={(e) => {
|
1010 |
const value = parseInt(e.target.value);
|
1011 |
+
if (value >= 1 && value <= maxExplorationLimit) {
|
1012 |
setExplorationRadius(value);
|
1013 |
}
|
1014 |
}}
|
|
|
1020 |
textAlign: 'center'
|
1021 |
}}
|
1022 |
/>
|
1023 |
+
<span>km</span>
|
1024 |
</div>
|
1025 |
</div>
|
1026 |
|
@@ -2,12 +2,13 @@ from fastapi import FastAPI, BackgroundTasks
|
|
2 |
from fastapi.middleware.cors import CORSMiddleware
|
3 |
from fastapi.responses import JSONResponse
|
4 |
from pydantic import BaseModel, Field
|
5 |
-
import requests
|
6 |
from geopy.geocoders import Nominatim
|
7 |
import geopy.distance
|
8 |
from cachetools import TTLCache
|
9 |
import os
|
10 |
from dotenv import load_dotenv
|
|
|
11 |
|
12 |
load_dotenv()
|
13 |
|
@@ -25,7 +26,7 @@ class Geodistance(BaseModel):
|
|
25 |
class NearbyWikiPage(BaseModel):
|
26 |
lat: float = Field(default=54.163337, ge=-90, le=90)
|
27 |
lon: float = Field(default=37.561109, ge=-180, le=180)
|
28 |
-
radius: int = Field(default=1000, ge=10, le=
|
29 |
limit: int = Field(10, ge=1, description="Number of pages to return")
|
30 |
|
31 |
app.add_middleware(
|
@@ -173,6 +174,18 @@ def get_geodistance(payload: Geodistance):
|
|
173 |
status_code=200
|
174 |
)
|
175 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
@app.post("/wiki/nearby")
|
177 |
async def get_nearby_wiki_pages(payload: NearbyWikiPage):
|
178 |
"""
|
@@ -198,42 +211,82 @@ async def get_nearby_wiki_pages(payload: NearbyWikiPage):
|
|
198 |
],
|
199 |
"count": 10 #Total no. of such pages
|
200 |
}
|
|
|
201 |
"""
|
202 |
-
|
203 |
radius = payload.radius
|
204 |
limit = payload.limit
|
205 |
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
return JSONResponse(
|
217 |
-
content={"error":
|
218 |
status_code=500
|
219 |
)
|
220 |
-
|
|
|
|
|
|
|
|
|
221 |
|
222 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
|
|
|
|
237 |
|
238 |
|
239 |
|
|
|
2 |
from fastapi.middleware.cors import CORSMiddleware
|
3 |
from fastapi.responses import JSONResponse
|
4 |
from pydantic import BaseModel, Field
|
5 |
+
import requests, httpx, asyncio
|
6 |
from geopy.geocoders import Nominatim
|
7 |
import geopy.distance
|
8 |
from cachetools import TTLCache
|
9 |
import os
|
10 |
from dotenv import load_dotenv
|
11 |
+
from backend.utils import generate_circle_centers
|
12 |
|
13 |
load_dotenv()
|
14 |
|
|
|
26 |
class NearbyWikiPage(BaseModel):
|
27 |
lat: float = Field(default=54.163337, ge=-90, le=90)
|
28 |
lon: float = Field(default=37.561109, ge=-180, le=180)
|
29 |
+
radius: int = Field(default=1000, ge=10, le=100_000,description="Distance in meters from the reference point")
|
30 |
limit: int = Field(10, ge=1, description="Number of pages to return")
|
31 |
|
32 |
app.add_middleware(
|
|
|
174 |
status_code=200
|
175 |
)
|
176 |
|
177 |
+
|
178 |
+
async def fetch_url(client: httpx.AsyncClient, url: str):
|
179 |
+
try:
|
180 |
+
response = await client.get(url, timeout=10.0)
|
181 |
+
return {
|
182 |
+
"url": url,
|
183 |
+
"status": response.status_code,
|
184 |
+
"data": response.json() if response.status_code == 200 else None,
|
185 |
+
}
|
186 |
+
except Exception as e:
|
187 |
+
return {"url": url, "error": str(e)}
|
188 |
+
|
189 |
@app.post("/wiki/nearby")
|
190 |
async def get_nearby_wiki_pages(payload: NearbyWikiPage):
|
191 |
"""
|
|
|
211 |
],
|
212 |
"count": 10 #Total no. of such pages
|
213 |
}
|
214 |
+
Example raw respone from Wikipedia API: https://en.wikipedia.org/w/api.php?action=query&list=geosearch&gscoord=40.7128%7C-74.0060&gsradius=10000&gslimit=1&format=json
|
215 |
"""
|
216 |
+
lat_center, lon_center = payload.lat, payload.lon
|
217 |
radius = payload.radius
|
218 |
limit = payload.limit
|
219 |
|
220 |
+
if radius <= 10000:
|
221 |
+
url = ("https://en.wikipedia.org/w/api.php"+"?action=query"
|
222 |
+
"&list=geosearch"
|
223 |
+
f"&gscoord={lat_center}|{lon_center}"
|
224 |
+
f"&gsradius={radius}"
|
225 |
+
f"&gslimit={limit}"
|
226 |
+
"&format=json")
|
227 |
+
# print(url)
|
228 |
+
try:
|
229 |
+
response = requests.get(url, timeout=10)
|
230 |
+
if response.status_code != 200:
|
231 |
+
return JSONResponse(
|
232 |
+
content={"error": "Failed to fetch nearby pages"},
|
233 |
+
status_code=500
|
234 |
+
)
|
235 |
+
data = response.json()
|
236 |
+
|
237 |
+
pages = data.get("query", {}).get("geosearch", [])
|
238 |
+
|
239 |
+
return JSONResponse(
|
240 |
+
content={
|
241 |
+
"pages": pages,
|
242 |
+
"count": len(pages)
|
243 |
+
},
|
244 |
+
status_code=200
|
245 |
+
)
|
246 |
+
except Exception as e:
|
247 |
return JSONResponse(
|
248 |
+
content={"error": str(e)},
|
249 |
status_code=500
|
250 |
)
|
251 |
+
elif radius > 10000:
|
252 |
+
small_circle_centers = generate_circle_centers(lat_center, lon_center, radius / 1000, small_radius_km=10)
|
253 |
+
all_pages = []
|
254 |
+
base_url = "https://en.wikipedia.org/w/api.php?action=query&list=geosearch&gscoord={lat}|{lon}&gsradius={small_radius_km}&gslimit={page_limit}&format=json"
|
255 |
+
urls = [base_url.format(lat=center[0], lon=center[1], small_radius_km=10*1000, page_limit=100) for center in small_circle_centers]
|
256 |
|
257 |
+
print("URL Counts:", len(urls))
|
258 |
+
try:
|
259 |
+
async with httpx.AsyncClient() as client:
|
260 |
+
tasks = [fetch_url(client, url) for url in urls]
|
261 |
+
results = await asyncio.gather(*tasks)
|
262 |
+
|
263 |
+
# print(results)
|
264 |
+
for result in results:
|
265 |
+
for unit in result.get("data", {}).get("query", {}).get("geosearch", []):
|
266 |
+
lat, lon = unit.get("lat"), unit.get("lon")
|
267 |
+
if lat is not None and lon is not None:
|
268 |
+
dist = int(geopy.distance.distance(
|
269 |
+
(lat_center, lon_center), (lat, lon)
|
270 |
+
).m)
|
271 |
+
print(dist)
|
272 |
+
else:
|
273 |
+
dist = None
|
274 |
|
275 |
+
unit_with_dist = {**unit, "dist": dist}
|
276 |
+
all_pages.append(unit_with_dist)
|
277 |
+
|
278 |
+
return JSONResponse(
|
279 |
+
content={
|
280 |
+
"pages": all_pages,
|
281 |
+
"count": len(all_pages)
|
282 |
+
}
|
283 |
+
)
|
284 |
+
|
285 |
+
except Exception as e:
|
286 |
+
return JSONResponse(
|
287 |
+
content={"error": str(e)},
|
288 |
+
status_code=500
|
289 |
+
)
|
290 |
|
291 |
|
292 |
|