Debito's picture
Upload 4 files
7aad614 verified
raw
history blame
40.5 kB
#!/usr/bin/env python3
"""
renamed from app_real.py - Production-Ready Mamba Encoder Swarm Demo
Combines real model functionality with rich UI and comprehensive error handling
"""
import gradio as gr
import torch
import numpy as np
import time
import json
import logging
import os
import psutil
from typing import Optional, Dict, Any, Tuple
from datetime import datetime
from transformers import AutoTokenizer, AutoConfig
# Setup comprehensive logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler('mamba_swarm_demo.log'),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
class MambaSwarmDemo:
"""Production-ready Mamba Swarm Demo with fallback capabilities"""
def __init__(self, model_path: str = "./", fallback_mode: bool = False):
self.model = None
self.tokenizer = None
self.config = None
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.model_path = model_path
self.fallback_mode = fallback_mode
self.model_loaded = False
# Performance tracking
self.stats = {
'total_requests': 0,
'successful_generations': 0,
'failed_generations': 0,
'avg_generation_time': 0.0,
'total_tokens_generated': 0
}
# Domain mappings for intelligent routing
self.domain_keywords = {
'medical': ['medical', 'health', 'doctor', 'patient', 'disease', 'treatment', 'symptom', 'diagnosis'],
'legal': ['legal', 'law', 'court', 'judge', 'contract', 'patent', 'lawsuit', 'attorney'],
'code': ['code', 'python', 'programming', 'function', 'algorithm', 'software', 'debug', 'api'],
'science': ['science', 'research', 'experiment', 'theory', 'physics', 'chemistry', 'biology'],
'creative': ['story', 'creative', 'write', 'novel', 'poem', 'character', 'plot', 'narrative'],
'business': ['business', 'marketing', 'strategy', 'finance', 'management', 'sales', 'revenue'],
'general': ['explain', 'what', 'how', 'why', 'describe', 'tell', 'information']
}
self._initialize_model()
logger.info(f"Demo initialized - Model loaded: {self.model_loaded}, Fallback mode: {self.fallback_mode}")
def _initialize_model(self):
"""Initialize model with comprehensive error handling and fallback"""
try:
logger.info("Attempting to load Mamba Swarm model...")
# Check if model files exist
config_path = os.path.join(self.model_path, "config.json")
if not os.path.exists(config_path) and not self.fallback_mode:
logger.warning(f"Config file not found at {config_path}, enabling fallback mode")
self.fallback_mode = True
if not self.fallback_mode:
# Try to load real model
self._load_real_model()
else:
# Initialize in fallback mode
self._initialize_fallback_mode()
except Exception as e:
logger.error(f"Model initialization failed: {e}")
logger.info("Falling back to simulation mode")
self.fallback_mode = True
self._initialize_fallback_mode()
def _load_real_model(self):
"""Load the actual Mamba Swarm model"""
try:
# Try multiple import paths for the model
model_class = None
# Try importing from different locations
try:
from modeling_mamba_swarm import MambaSwarmForCausalLM
model_class = MambaSwarmForCausalLM
logger.info("Loaded MambaSwarmForCausalLM from modeling_mamba_swarm")
except ImportError:
try:
from upload_to_hf import MambaSwarmForCausalLM
model_class = MambaSwarmForCausalLM
logger.info("Loaded MambaSwarmForCausalLM from upload_to_hf")
except ImportError:
try:
from core.mamba_swarm_integration import MambaEncoderSwarmModel
model_class = MambaEncoderSwarmModel
logger.info("Loaded MambaEncoderSwarmModel from core.mamba_swarm_integration")
except ImportError:
try:
from system.mambaSwarm import UnifiedMambaSwarm
# Use the unified swarm in native mode
swarm = UnifiedMambaSwarm(use_pretrained=False)
if hasattr(swarm, 'native_swarm_model') and swarm.native_swarm_model:
self.model = swarm.native_swarm_model
self.model_loaded = True
logger.info("Loaded native swarm model from UnifiedMambaSwarm")
return
else:
raise ImportError("No native swarm model available")
except ImportError as e:
logger.error(f"All model imports failed: {e}")
raise ImportError("No compatible Mamba Swarm model found")
if model_class is None:
raise ImportError("No model class available")
# Load configuration
try:
self.config = AutoConfig.from_pretrained(self.model_path, trust_remote_code=True)
logger.info(f"Loaded config: {self.config.__class__.__name__}")
except Exception as e:
logger.warning(f"Could not load config from {self.model_path}: {e}")
# Create a default config using our MambaSwarmConfig
try:
from modeling_mamba_swarm import MambaSwarmConfig
self.config = MambaSwarmConfig(
num_encoders=8,
max_mamba_encoders=100,
d_model=768,
vocab_size=50257,
max_sequence_length=2048
)
logger.info("Using default MambaSwarmConfig")
except ImportError:
# Final fallback to basic config
from core.config import MambaConfig
self.config = MambaConfig()
# Add swarm-specific attributes
self.config.num_encoders = 8
self.config.max_mamba_encoders = 100
self.config.max_sequence_length = 2048
logger.info("Using default MambaConfig with swarm attributes")
# Load tokenizer
try:
self.tokenizer = AutoTokenizer.from_pretrained(self.model_path)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
logger.info("Tokenizer loaded successfully")
except Exception as e:
logger.warning(f"Could not load tokenizer: {e}")
# Use a simple fallback tokenizer
from transformers import GPT2Tokenizer
self.tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
logger.info("Using fallback GPT2 tokenizer")
# Load model with memory optimization
dtype = torch.float16 if self.device.type == "cuda" else torch.float32
if model_class == MambaEncoderSwarmModel:
# Native integration model - create with MambaConfig
from core.config import MambaConfig
if not hasattr(self, 'config') or not isinstance(self.config, MambaConfig):
mamba_config = MambaConfig(
d_model=getattr(self.config, 'd_model', 768),
vocab_size=getattr(self.config, 'vocab_size', 50257),
n_layers=8,
d_state=16,
d_conv=4,
bias=False
)
self.model = model_class(mamba_config, num_encoders=getattr(self.config, 'num_encoders', 8))
else:
self.model = model_class(self.config, num_encoders=getattr(self.config, 'num_encoders', 8))
else:
# HuggingFace-style model or our new MambaSwarmForCausalLM
if hasattr(model_class, 'from_pretrained') and os.path.exists(self.model_path):
self.model = model_class.from_pretrained(
self.model_path,
config=self.config,
torch_dtype=dtype,
trust_remote_code=True,
low_cpu_mem_usage=True
)
else:
# Create with config only
self.model = model_class(self.config)
self.model.to(self.device)
self.model.eval()
self.model_loaded = True
# Log model info
num_params = sum(p.numel() for p in self.model.parameters())
logger.info(f"Model loaded successfully on {self.device}")
logger.info(f"Model parameters: {num_params:,} ({num_params/1e6:.1f}M)")
except Exception as e:
logger.error(f"Real model loading failed: {e}")
raise
def _initialize_fallback_mode(self):
"""Initialize fallback/simulation mode"""
logger.info("Initializing fallback simulation mode")
# Create mock config
try:
from modeling_mamba_swarm import MambaSwarmConfig
self.config = MambaSwarmConfig(
num_encoders=8,
max_mamba_encoders=100,
d_model=768,
vocab_size=50257,
max_sequence_length=2048
)
except ImportError:
# Fallback mock config
self.config = type('MockConfig', (), {
'max_mamba_encoders': 100,
'num_encoders': 8,
'd_model': 768,
'vocab_size': 50257,
'max_sequence_length': 2048
})()
# Create mock tokenizer
class MockTokenizer:
def __init__(self):
self.pad_token_id = 0
self.eos_token_id = 1
self.pad_token = "[PAD]"
self.eos_token = "[EOS]"
def encode(self, text, return_tensors=None):
# Simple word-based tokenization for simulation
tokens = text.split()
token_ids = [hash(token) % 1000 for token in tokens]
if return_tensors == "pt":
return torch.tensor([token_ids])
return token_ids
def decode(self, token_ids, skip_special_tokens=True):
# Mock decoding
return f"Generated response for {len(token_ids)} tokens"
self.tokenizer = MockTokenizer()
# Create mock model
class MockModel:
def __init__(self, config):
self.config = config
self.num_active_encoders = 5
def set_active_encoders(self, num):
self.num_active_encoders = min(num, self.config.max_mamba_encoders)
def eval(self):
pass
self.model = MockModel(self.config)
logger.info("Fallback mode initialized successfully")
def _detect_domain(self, prompt: str) -> Tuple[str, float]:
"""Detect the domain of the prompt for intelligent routing"""
prompt_lower = prompt.lower()
domain_scores = {}
for domain, keywords in self.domain_keywords.items():
score = sum(1 for keyword in keywords if keyword in prompt_lower)
if score > 0:
domain_scores[domain] = score / len(keywords)
if domain_scores:
best_domain = max(domain_scores, key=domain_scores.get)
confidence = domain_scores[best_domain]
return best_domain, confidence
return 'general', 0.5
def _simulate_encoder_selection(self, prompt: str, num_encoders: int) -> Dict[str, Any]:
"""Simulate intelligent encoder selection based on domain"""
domain, confidence = self._detect_domain(prompt)
# Domain-specific encoder ranges (simulated)
domain_ranges = {
'medical': (1, 20),
'legal': (21, 40),
'code': (41, 60),
'science': (61, 80),
'creative': (81, 95),
'business': (96, 100),
'general': (1, 100)
}
start, end = domain_ranges.get(domain, (1, 100))
available_encoders = list(range(start, min(end + 1, 101)))
# Select encoders based on prompt complexity and domain
prompt_complexity = min(len(prompt.split()) / 10, 3.0) # Complexity factor
optimal_count = min(max(int(num_encoders * (1 + prompt_complexity)), 3), 25)
if len(available_encoders) >= optimal_count:
selected = np.random.choice(available_encoders, size=optimal_count, replace=False)
else:
selected = available_encoders
selected_encoders = sorted(selected.tolist())
# Generate confidence scores
base_confidence = max(0.6, confidence)
confidence_scores = np.random.normal(base_confidence, 0.1, len(selected_encoders))
confidence_scores = np.clip(confidence_scores, 0.5, 0.98).tolist()
return {
'selected_encoders': selected_encoders,
'confidence_scores': confidence_scores,
'detected_domain': domain,
'domain_confidence': confidence,
'total_active': len(selected_encoders)
}
def _simulate_generation(self, prompt: str, routing_info: Dict, max_length: int) -> str:
"""Generate sophisticated simulated responses based on domain"""
domain = routing_info['detected_domain']
domain_responses = {
'medical': f"""Based on medical literature and current research, regarding "{prompt[:50]}...":
This condition/topic involves multiple factors including genetic predisposition, environmental influences, and lifestyle factors. Key considerations include:
β€’ Proper medical evaluation is essential
β€’ Individual symptoms may vary significantly
β€’ Treatment approaches should be personalized
β€’ Regular monitoring is typically recommended
**Important**: This information is for educational purposes only. Please consult with qualified healthcare professionals for personalized medical advice and treatment recommendations.""",
'legal': f"""From a legal perspective on "{prompt[:50]}...":
The legal framework surrounding this matter involves several key considerations:
β€’ Jurisdictional requirements and applicable statutes
β€’ Precedent cases and regulatory guidelines
β€’ Compliance obligations and reporting requirements
β€’ Risk assessment and mitigation strategies
**Disclaimer**: This information is for general informational purposes only and does not constitute legal advice. Consult with qualified legal professionals for specific legal matters.""",
'code': f"""Here's a comprehensive solution for "{prompt[:50]}...":
```python
def optimized_solution(input_data):
\"\"\"
Efficient implementation with error handling
Time complexity: O(n log n)
Space complexity: O(n)
\"\"\"
try:
# Input validation
if not input_data:
raise ValueError("Input data cannot be empty")
# Core algorithm implementation
result = process_data(input_data)
# Additional optimizations
result = optimize_output(result)
return result
except Exception as e:
logger.error(f"Processing error: {{e}}")
return None
def process_data(data):
# Implementation details here
return processed_data
def optimize_output(data):
# Performance optimizations
return optimized_data
```
**Key Features:**
β€’ Error handling and input validation
β€’ Optimized performance characteristics
β€’ Comprehensive documentation
β€’ Production-ready implementation""",
'science': f"""Scientific Analysis of "{prompt[:50]}...":
Based on current scientific understanding and peer-reviewed research:
**Theoretical Framework:**
The underlying principles involve complex interactions between multiple variables, governed by established scientific laws and emerging theories.
**Methodology:**
β€’ Systematic observation and data collection
β€’ Controlled experimental design
β€’ Statistical analysis and validation
β€’ Peer review and reproducibility testing
**Current Research:**
Recent studies indicate significant progress in understanding the mechanisms involved, with several promising avenues for future investigation.
**Implications:**
These findings have broad applications across multiple disciplines and may lead to significant advances in the field.""",
'creative': f"""**{prompt[:30]}...**
The story unfolds in a world where imagination meets reality, where every character carries the weight of their dreams and the burden of their choices.
*Chapter 1: The Beginning*
In the quiet moments before dawn, when the world holds its breath between night and day, our tale begins. The protagonist stands at the threshold of an adventure that will challenge everything they thought they knew about themselves and the world around them.
The narrative weaves through layers of meaning, exploring themes of identity, purpose, and the delicate balance between hope and reality. Each scene is crafted with careful attention to emotional resonance and character development.
*As the story progresses, we discover that the true journey is not external, but internalβ€”a transformation of the soul that mirrors the changing landscape of the world itself.*
**Themes Explored:**
β€’ Personal growth and self-discovery
β€’ The power of resilience and determination
β€’ The complexity of human relationships
β€’ The intersection of dreams and reality""",
'business': f"""**Strategic Analysis: {prompt[:50]}...**
**Executive Summary:**
This comprehensive analysis examines the strategic implications and market opportunities related to the identified business challenge.
**Market Assessment:**
β€’ Current market size and growth projections
β€’ Competitive landscape analysis
β€’ Key trends and disruption factors
β€’ Customer segment identification
**Strategic Recommendations:**
1. **Short-term actions** (0-6 months)
- Immediate market positioning
- Resource allocation optimization
- Risk mitigation strategies
2. **Medium-term initiatives** (6-18 months)
- Strategic partnerships and alliances
- Product/service development
- Market expansion opportunities
3. **Long-term vision** (18+ months)
- Innovation and R&D investment
- Scalability and sustainability
- Market leadership positioning
**Financial Projections:**
Based on conservative estimates, implementation of these strategies could result in significant ROI and market share growth.""",
'general': f"""**Comprehensive Response to: "{prompt[:50]}..."**
Thank you for your inquiry. Based on available knowledge and expertise from {routing_info['total_active']} specialized domains, here's a comprehensive analysis:
**Key Points:**
β€’ The topic involves multiple interconnected factors that require careful consideration
β€’ Current understanding is based on established principles and ongoing research
β€’ Practical applications vary depending on specific context and requirements
β€’ Best practices emphasize a balanced, evidence-based approach
**Detailed Analysis:**
The subject matter encompasses several important dimensions that merit thorough examination. Each aspect contributes to a deeper understanding of the overall concept and its implications.
**Practical Considerations:**
Implementation requires careful planning, adequate resources, and ongoing monitoring to ensure optimal outcomes. Success factors include stakeholder engagement, clear communication, and adaptive management strategies.
**Conclusion:**
This analysis provides a foundation for informed decision-making while acknowledging the complexity and nuanced nature of the topic."""
}
return domain_responses.get(domain, domain_responses['general'])
def generate_text(self, prompt: str, max_length: int = 100, temperature: float = 0.7,
top_p: float = 0.9, num_encoders: int = 5, show_routing: bool = True) -> Tuple[str, str]:
"""
Generate text with comprehensive error handling and routing information
Returns:
Tuple of (generated_text, routing_info_display)
"""
start_time = time.time()
# Update statistics
self.stats['total_requests'] += 1
try:
if not prompt.strip():
return "Please enter a prompt.", ""
# Simulate routing decision
routing_info = self._simulate_encoder_selection(prompt, num_encoders)
if self.model_loaded and not self.fallback_mode:
# Real model generation
response = self._generate_real(prompt, max_length, temperature, top_p, num_encoders)
else:
# Simulated generation with sophisticated responses
response = self._simulate_generation(prompt, routing_info, max_length)
# Calculate performance metrics
generation_time = time.time() - start_time
estimated_tokens = len(response.split())
# Update statistics
self.stats['successful_generations'] += 1
self.stats['total_tokens_generated'] += estimated_tokens
# Update average generation time
total_successful = self.stats['successful_generations']
prev_avg = self.stats['avg_generation_time']
self.stats['avg_generation_time'] = (prev_avg * (total_successful - 1) + generation_time) / total_successful
# Generate routing display
routing_display = ""
if show_routing:
routing_display = self._create_routing_display(routing_info, generation_time, estimated_tokens)
logger.info(f"Generated {estimated_tokens} tokens in {generation_time:.2f}s")
return response, routing_display
except Exception as e:
self.stats['failed_generations'] += 1
error_msg = f"Error generating response: {str(e)}"
logger.error(error_msg)
return error_msg, ""
def _generate_real(self, prompt: str, max_length: int, temperature: float,
top_p: float, num_encoders: int) -> str:
"""Generate using real model"""
try:
# Encode input
inputs = self.tokenizer.encode(prompt, return_tensors="pt").to(self.device)
# Adjust number of active encoders
if hasattr(self.model, 'set_active_encoders'):
self.model.set_active_encoders(min(num_encoders, self.config.max_mamba_encoders))
# Generate with memory optimization
with torch.no_grad():
outputs = self.model.generate(
inputs,
max_length=min(max_length, getattr(self.config, 'max_sequence_length', 2048)),
temperature=temperature,
top_p=top_p,
do_sample=True,
pad_token_id=self.tokenizer.pad_token_id,
eos_token_id=self.tokenizer.eos_token_id,
use_cache=True
)
# Decode output
generated_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
# Remove input prompt from output
response = generated_text[len(prompt):].strip()
return response if response else "Generated response was empty."
except torch.cuda.OutOfMemoryError:
logger.error("CUDA out of memory during generation")
return "Error: GPU memory insufficient. Try reducing max_length or num_encoders."
except Exception as e:
logger.error(f"Real generation error: {e}")
return f"Generation error: {str(e)}"
def _create_routing_display(self, routing_info: Dict, generation_time: float,
estimated_tokens: int) -> str:
"""Create rich routing information display"""
return f"""
## 🧠 Intelligent Routing Analysis
**🎯 Domain Detection:**
- **Primary Domain**: {routing_info['detected_domain'].title()}
- **Confidence**: {routing_info['domain_confidence']:.1%}
- **Specialization Level**: {'High' if routing_info['domain_confidence'] > 0.7 else 'Medium' if routing_info['domain_confidence'] > 0.4 else 'General'}
**⚑ Encoder Activation:**
- **Active Encoders**: {routing_info['total_active']}/{self.config.max_mamba_encoders}
- **Selection Strategy**: Domain-optimized routing
- **Load Distribution**: Balanced across specialized encoders
**πŸ”’ Selected Encoder IDs:**
{', '.join(map(str, routing_info['selected_encoders'][:15]))}{'...' if len(routing_info['selected_encoders']) > 15 else ''}
**πŸ“Š Performance Metrics:**
- **Generation Time**: {generation_time:.2f}s
- **Estimated Tokens**: {estimated_tokens}
- **Tokens/Second**: {estimated_tokens/generation_time:.1f}
- **Model Mode**: {'Real Model' if self.model_loaded and not self.fallback_mode else 'Simulation'}
**🎚️ Confidence Scores (Top 5):**
{', '.join([f'{score:.3f}' for score in routing_info['confidence_scores'][:5]])}{'...' if len(routing_info['confidence_scores']) > 5 else ''}
**πŸ’‘ Optimization Notes:**
- Encoder selection optimized for domain: {routing_info['detected_domain']}
- Dynamic load balancing across {routing_info['total_active']} active encoders
- Confidence-weighted aggregation applied
"""
def get_model_info(self) -> str:
"""Get comprehensive model information"""
if not self.model:
return "Model not initialized"
# Get system information
memory_info = psutil.virtual_memory()
gpu_info = "N/A"
if torch.cuda.is_available():
gpu_info = f"{torch.cuda.get_device_name(0)} ({torch.cuda.get_device_properties(0).total_memory // 1024**3}GB)"
return f"""
**πŸ€– Mamba Encoder Swarm Model Information**
**Model Configuration:**
- **Status**: {'βœ… Loaded' if self.model_loaded else '⚠️ Simulation Mode'}
- **Active Encoders**: {getattr(self.model, 'num_active_encoders', 'N/A')}
- **Max Encoders**: {self.config.max_mamba_encoders}
- **Model Dimension**: {self.config.d_model}
- **Vocabulary Size**: {self.config.vocab_size:,}
- **Max Sequence Length**: {getattr(self.config, 'max_sequence_length', 'N/A')}
**System Information:**
- **Device**: {self.device} {f'({gpu_info})' if gpu_info != 'N/A' else ''}
- **RAM Usage**: {memory_info.percent:.1f}% ({memory_info.used // 1024**3}GB / {memory_info.total // 1024**3}GB)
- **Python/PyTorch**: {torch.__version__}
**Performance Statistics:**
- **Total Requests**: {self.stats['total_requests']}
- **Successful**: {self.stats['successful_generations']}
- **Failed**: {self.stats['failed_generations']}
- **Success Rate**: {(self.stats['successful_generations'] / max(self.stats['total_requests'], 1) * 100):.1f}%
- **Avg Generation Time**: {self.stats['avg_generation_time']:.2f}s
- **Total Tokens Generated**: {self.stats['total_tokens_generated']:,}
**Fallback Mode**: {'⚠️ Active' if self.fallback_mode else 'βœ… Disabled'}
"""
def get_system_status(self) -> Dict[str, Any]:
"""Get system status for monitoring"""
return {
'model_loaded': self.model_loaded,
'fallback_mode': self.fallback_mode,
'device': str(self.device),
'stats': self.stats.copy(),
'timestamp': datetime.now().isoformat()
}
def create_production_demo() -> gr.Blocks:
"""Create production-ready Gradio interface"""
# Initialize demo with fallback capability
try:
demo_instance = MambaSwarmDemo(model_path="./", fallback_mode=False)
except Exception as e:
logger.warning(f"Primary initialization failed: {e}")
demo_instance = MambaSwarmDemo(model_path="./", fallback_mode=True)
def generate_response(prompt, max_length, temperature, top_p, num_encoders, show_routing):
return demo_instance.generate_text(prompt, max_length, temperature, top_p, num_encoders, show_routing)
def show_model_info():
return demo_instance.get_model_info()
def refresh_model_info():
return demo_instance.get_model_info()
# Create interface
with gr.Blocks(
title="Mamba Encoder Swarm - Production Demo",
theme=gr.themes.Soft(),
css="""
.gradio-container {
max-width: 1200px;
margin: auto;
}
.model-info {
background-color: #f8f9fa;
border-radius: 8px;
padding: 15px;
margin: 10px 0;
}
.routing-info {
background-color: #e8f4fd;
border-radius: 8px;
padding: 15px;
margin: 10px 0;
}
"""
) as demo:
# Header
gr.Markdown("""
# 🐍 Mamba Encoder Swarm - Production Demo
**Advanced Language Model with Dynamic Routing & Intelligent Encoder Selection**
Experience the power of up to 100 specialized Mamba encoders with intelligent domain-aware routing,
comprehensive error handling, and production-ready performance monitoring.
""")
# Status indicator
with gr.Row():
with gr.Column(scale=1):
status_indicator = gr.Markdown(
f"**Status**: {'🟒 Real Model' if demo_instance.model_loaded and not demo_instance.fallback_mode else '🟑 Simulation Mode'}"
)
with gr.Row():
# Left column - Input and controls
with gr.Column(scale=2):
prompt_input = gr.Textbox(
label="πŸ“ Input Prompt",
placeholder="Enter your prompt here... (e.g., 'Explain quantum computing', 'Write a Python function', 'Analyze market trends')",
lines=4,
max_lines=8
)
with gr.Accordion("βš™οΈ Generation Parameters", open=False):
with gr.Row():
max_length = gr.Slider(
label="Max Length",
minimum=50,
maximum=1000,
value=200,
step=25,
info="Maximum number of tokens to generate"
)
temperature = gr.Slider(
label="Temperature",
minimum=0.1,
maximum=2.0,
value=0.7,
step=0.1,
info="Controls randomness (lower = more focused)"
)
with gr.Row():
top_p = gr.Slider(
label="Top-p (Nucleus Sampling)",
minimum=0.1,
maximum=1.0,
value=0.9,
step=0.05,
info="Probability mass for nucleus sampling"
)
num_encoders = gr.Slider(
label="Target Active Encoders",
minimum=1,
maximum=25,
value=8,
step=1,
info="Preferred number of encoders to activate"
)
show_routing = gr.Checkbox(
label="Show Routing Information",
value=True,
info="Display detailed routing and performance metrics"
)
generate_btn = gr.Button("πŸš€ Generate Response", variant="primary", size="lg")
# Right column - Output and information
with gr.Column(scale=3):
response_output = gr.Textbox(
label="πŸ“„ Generated Response",
lines=12,
max_lines=20,
interactive=False,
show_copy_button=True
)
routing_output = gr.Markdown(
label="πŸ” Routing & Performance Analysis",
visible=True,
elem_classes=["routing-info"]
)
# Model information section
with gr.Accordion("πŸ€– Model Information & Statistics", open=False):
with gr.Row():
model_info_display = gr.Markdown(
value=show_model_info(),
elem_classes=["model-info"]
)
refresh_info_btn = gr.Button("πŸ”„ Refresh Info", size="sm")
# Examples section
with gr.Accordion("πŸ’‘ Example Prompts", open=True):
gr.Markdown("### Try these examples to see domain-specific routing in action:")
examples = [
["Explain the process of photosynthesis in detail", 300, 0.7, 0.9, 10, True],
["Write a Python function to implement binary search with error handling", 250, 0.5, 0.8, 8, True],
["What are the early symptoms of Type 2 diabetes?", 200, 0.6, 0.9, 12, True],
["Analyze the legal implications of AI-generated content", 350, 0.7, 0.9, 15, True],
["Write a creative short story about a time-traveling scientist", 400, 0.9, 0.95, 12, True],
["Develop a marketing strategy for a sustainable fashion startup", 300, 0.8, 0.9, 10, True],
["How does quantum entanglement work and what are its applications?", 350, 0.6, 0.9, 15, True]
]
gr.Examples(
examples=examples,
inputs=[prompt_input, max_length, temperature, top_p, num_encoders, show_routing],
outputs=[response_output, routing_output],
fn=generate_response,
cache_examples=False,
label="Click any example to load it"
)
# Event handlers
generate_btn.click(
fn=generate_response,
inputs=[prompt_input, max_length, temperature, top_p, num_encoders, show_routing],
outputs=[response_output, routing_output],
api_name="generate"
)
refresh_info_btn.click(
fn=refresh_model_info,
outputs=model_info_display
)
# Footer
gr.Markdown("""
---
### πŸ—οΈ Architecture Overview
**🧠 Intelligent Routing System**
- Domain detection based on prompt analysis
- Dynamic encoder selection optimized for content type
- Load balancing across specialized encoder pools
**πŸ”§ Production Features**
- Comprehensive error handling and fallback modes
- Real-time performance monitoring and statistics
- Memory optimization and CUDA support
- Detailed logging and debugging capabilities
**πŸ“Š Specialized Domains**
- **Medical & Healthcare** β€’ **Legal & Regulatory** β€’ **Code & Technical**
- **Science & Research** β€’ **Creative Writing** β€’ **Business & Finance**
Built with ❀️ using Gradio, PyTorch, and the Mamba architecture
""")
return demo
if __name__ == "__main__":
# Create and launch production demo
try:
demo = create_production_demo()
# Launch with production settings - compatible with different Gradio versions
launch_kwargs = {
"server_name": "0.0.0.0",
"server_port": 7860,
"share": False, # Set to True for public sharing
"debug": False,
"show_error": True,
"quiet": False,
}
# Add optional parameters if supported
try:
# Test if these parameters are supported in this Gradio version
import gradio as gr
import inspect
launch_signature = inspect.signature(gr.Blocks.launch)
# Add parameters if supported
if 'favicon_path' in launch_signature.parameters:
launch_kwargs['favicon_path'] = None
if 'ssl_verify' in launch_signature.parameters:
launch_kwargs['ssl_verify'] = False
if 'show_tips' in launch_signature.parameters:
launch_kwargs['show_tips'] = True
if 'enable_queue' in launch_signature.parameters:
launch_kwargs['enable_queue'] = True
if 'max_threads' in launch_signature.parameters:
launch_kwargs['max_threads'] = 10
except Exception as e:
logger.warning(f"Could not detect Gradio parameters: {e}")
# Launch with detected parameters
logger.info(f"Launching with parameters: {list(launch_kwargs.keys())}")
demo.launch(**launch_kwargs)
except Exception as e:
logger.error(f"Failed to launch demo: {e}")
print(f"❌ Demo launch failed: {e}")
print("Please check the logs for more details.")
# Try minimal launch as last resort
try:
logger.info("Attempting minimal launch...")
demo.launch(share=False, debug=False)
except Exception as e2:
logger.error(f"Minimal launch also failed: {e2}")
print(f"❌ All launch attempts failed. Error: {e2}")