Debito commited on
Commit
336b228
·
verified ·
1 Parent(s): a74246f

Upload upload_to_hf.py

Browse files
Files changed (1) hide show
  1. upload_to_hf.py +235 -0
upload_to_hf.py ADDED
@@ -0,0 +1,235 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # upload_to_hf.py - Script to upload your Mamba Swarm to HuggingFace
2
+
3
+ import os
4
+ import shutil
5
+ from huggingface_hub import HfApi, upload_folder
6
+ import json
7
+
8
+ def prepare_model_repo():
9
+ """Prepare model repository structure for HuggingFace"""
10
+
11
+ # Create required files for HuggingFace model
12
+ model_files = {
13
+ "README.md": create_model_readme(),
14
+ "config.json": create_model_config(),
15
+ "requirements.txt": create_requirements(),
16
+ "modeling_mamba_swarm.py": create_modeling_file()
17
+ }
18
+
19
+ # Create model repo directory
20
+ os.makedirs("hf_model_repo", exist_ok=True)
21
+
22
+ # Copy your mamba_swarm code
23
+ shutil.copytree("mamba_swarm", "hf_model_repo/mamba_swarm", dirs_exist_ok=True)
24
+
25
+ # Create HuggingFace specific files
26
+ for filename, content in model_files.items():
27
+ with open(f"hf_model_repo/{filename}", "w") as f:
28
+ f.write(content)
29
+
30
+ print("Model repository prepared!")
31
+
32
+ def create_model_readme():
33
+ return """---
34
+ license: apache-2.0
35
+ language:
36
+ - en
37
+ pipeline_tag: text-generation
38
+ tags:
39
+ - mamba
40
+ - swarm
41
+ - routing
42
+ - language-model
43
+ ---
44
+
45
+ # Mamba Swarm: Dynamic Routing Language Model
46
+
47
+ A novel architecture combining 100 specialized Mamba encoders with dynamic routing and aggregation for efficient language modeling.
48
+
49
+ ## Architecture
50
+
51
+ - **100 Mamba Encoders**: Specialized domain experts
52
+ - **Dynamic Router**: Selects relevant encoders per input
53
+ - **Aggregation Layer**: Combines encoder outputs
54
+ - **Mamba Decoder**: Generates final responses
55
+
56
+ ## Usage
57
+
58
+ ```python
59
+ from transformers import AutoModel, AutoTokenizer
60
+ from mamba_swarm import MambaSwarmEngine
61
+
62
+ # Load the model
63
+ model = MambaSwarmEngine.from_pretrained("your-username/mamba-swarm-model")
64
+ tokenizer = AutoTokenizer.from_pretrained("your-username/mamba-swarm-model")
65
+
66
+ # Generate text
67
+ input_text = "Explain quantum computing"
68
+ inputs = tokenizer(input_text, return_tensors="pt")
69
+ outputs = model.generate(**inputs, max_length=100)
70
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
71
+ print(response)
72
+ ```
73
+
74
+ ## Training
75
+
76
+ This model uses a three-phase training approach:
77
+ 1. Collective pre-training on general data
78
+ 2. Domain specialization for encoder groups
79
+ 3. End-to-end coordination training
80
+
81
+ ## Performance
82
+
83
+ - **Parameters**: ~7B total (100 × 70M encoders)
84
+ - **Domains**: Medical, Legal, Code, Science, General
85
+ - **Routing Efficiency**: Only 10-20% of encoders active per query
86
+
87
+ ## Citation
88
+
89
+ ```
90
+ @misc{mamba-swarm-2025,
91
+ title={Mamba Swarm: Dynamic Routing for Efficient Language Modeling},
92
+ author={Your Name},
93
+ year={2025}
94
+ }
95
+ ```
96
+ """
97
+
98
+ def create_model_config():
99
+ config = {
100
+ "model_type": "mamba_swarm",
101
+ "architectures": ["MambaSwarmForCausalLM"],
102
+ "num_encoders": 100,
103
+ "encoder_config": {
104
+ "d_model": 768,
105
+ "n_layer": 24,
106
+ "vocab_size": 50280,
107
+ "ssm_cfg": {},
108
+ "rms_norm": True,
109
+ "residual_in_fp32": True,
110
+ "fused_add_norm": True
111
+ },
112
+ "router_config": {
113
+ "top_k": 10,
114
+ "routing_strategy": "content_based"
115
+ },
116
+ "aggregator_config": {
117
+ "method": "weighted_sum",
118
+ "attention_heads": 8
119
+ },
120
+ "torch_dtype": "float16",
121
+ "use_cache": True
122
+ }
123
+ return json.dumps(config, indent=2)
124
+
125
+ def create_requirements():
126
+ return """torch>=2.0.0
127
+ transformers>=4.35.0
128
+ mamba-ssm>=1.2.0
129
+ causal-conv1d>=1.2.0
130
+ numpy>=1.21.0
131
+ scipy>=1.7.0
132
+ triton>=2.0.0
133
+ einops>=0.6.1
134
+ packaging>=20.0
135
+ """
136
+
137
+ def create_modeling_file():
138
+ return """# modeling_mamba_swarm.py - HuggingFace integration
139
+
140
+ from transformers import PreTrainedModel, PretrainedConfig
141
+ from transformers.modeling_outputs import CausalLMOutputWithPast
142
+ import torch
143
+ import torch.nn as nn
144
+
145
+ class MambaSwarmConfig(PretrainedConfig):
146
+ model_type = "mamba_swarm"
147
+
148
+ def __init__(
149
+ self,
150
+ num_encoders=100,
151
+ encoder_config=None,
152
+ router_config=None,
153
+ aggregator_config=None,
154
+ **kwargs
155
+ ):
156
+ self.num_encoders = num_encoders
157
+ self.encoder_config = encoder_config or {}
158
+ self.router_config = router_config or {}
159
+ self.aggregator_config = aggregator_config or {}
160
+ super().__init__(**kwargs)
161
+
162
+ class MambaSwarmForCausalLM(PreTrainedModel):
163
+ config_class = MambaSwarmConfig
164
+
165
+ def __init__(self, config):
166
+ super().__init__(config)
167
+
168
+ # Import your actual implementation
169
+ from mamba_swarm.system.swarm_engine import MambaSwarmEngine
170
+
171
+ self.swarm_engine = MambaSwarmEngine(config)
172
+
173
+ def forward(
174
+ self,
175
+ input_ids=None,
176
+ attention_mask=None,
177
+ labels=None,
178
+ **kwargs
179
+ ):
180
+ # Your forward pass implementation
181
+ outputs = self.swarm_engine(input_ids, attention_mask)
182
+
183
+ loss = None
184
+ if labels is not None:
185
+ # Calculate loss
186
+ loss_fct = nn.CrossEntropyLoss()
187
+ loss = loss_fct(outputs.logits.view(-1, outputs.logits.size(-1)), labels.view(-1))
188
+
189
+ return CausalLMOutputWithPast(
190
+ loss=loss,
191
+ logits=outputs.logits,
192
+ past_key_values=outputs.past_key_values,
193
+ )
194
+
195
+ def generate(self, *args, **kwargs):
196
+ return self.swarm_engine.generate(*args, **kwargs)
197
+
198
+ @classmethod
199
+ def from_pretrained(cls, model_name_or_path, *model_args, **kwargs):
200
+ # Custom loading logic if needed
201
+ return super().from_pretrained(model_name_or_path, *model_args, **kwargs)
202
+ """
203
+
204
+ def upload_model():
205
+ """Upload model code to HuggingFace"""
206
+ api = HfApi()
207
+
208
+ # Upload model repository
209
+ upload_folder(
210
+ folder_path="hf_model_repo",
211
+ repo_id="your-username/mamba-swarm-model", # Replace with your username
212
+ repo_type="model",
213
+ commit_message="Initial upload of Mamba Swarm model"
214
+ )
215
+
216
+ print("Model uploaded successfully!")
217
+
218
+ def upload_weights():
219
+ """Upload model weights separately"""
220
+ # This assumes you have trained weights in checkpoints/
221
+ api = HfApi()
222
+
223
+ upload_folder(
224
+ folder_path="checkpoints",
225
+ repo_id="your-username/mamba-swarm-weights", # Replace with your username
226
+ repo_type="model",
227
+ commit_message="Upload trained model weights"
228
+ )
229
+
230
+ print("Weights uploaded successfully!")
231
+
232
+ if __name__ == "__main__":
233
+ prepare_model_repo()
234
+ upload_model()
235
+ # upload_weights() # Uncomment when you have trained weights