Spaces:
Sleeping
Sleeping
Upload utils.py
Browse files- utils/utils.py +773 -0
utils/utils.py
ADDED
|
@@ -0,0 +1,773 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# =============================================================================
|
| 2 |
+
# utils/utils.py - Utility Functions for Mamba Encoder Swarm Architecture
|
| 3 |
+
# =============================================================================
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
import torch.nn.functional as F
|
| 8 |
+
import numpy as np
|
| 9 |
+
import time
|
| 10 |
+
import json
|
| 11 |
+
import logging
|
| 12 |
+
import os
|
| 13 |
+
import psutil
|
| 14 |
+
import gc
|
| 15 |
+
from typing import Dict, List, Tuple, Optional, Union, Any
|
| 16 |
+
from collections import defaultdict, deque
|
| 17 |
+
from datetime import datetime, timedelta
|
| 18 |
+
import threading
|
| 19 |
+
import warnings
|
| 20 |
+
from functools import wraps, lru_cache
|
| 21 |
+
import hashlib
|
| 22 |
+
import pickle
|
| 23 |
+
|
| 24 |
+
# Setup logging
|
| 25 |
+
logger = logging.getLogger(__name__)
|
| 26 |
+
|
| 27 |
+
# =============================================================================
|
| 28 |
+
# PERFORMANCE MONITORING UTILITIES
|
| 29 |
+
# =============================================================================
|
| 30 |
+
|
| 31 |
+
class PerformanceMonitor:
|
| 32 |
+
"""Monitor and track performance metrics for the swarm architecture"""
|
| 33 |
+
|
| 34 |
+
def __init__(self, max_history: int = 1000):
|
| 35 |
+
self.metrics = defaultdict(list)
|
| 36 |
+
self.max_history = max_history
|
| 37 |
+
self.start_times = {}
|
| 38 |
+
self.counters = defaultdict(int)
|
| 39 |
+
self.lock = threading.Lock()
|
| 40 |
+
|
| 41 |
+
def start_timer(self, name: str) -> None:
|
| 42 |
+
"""Start timing an operation"""
|
| 43 |
+
with self.lock:
|
| 44 |
+
self.start_times[name] = time.time()
|
| 45 |
+
|
| 46 |
+
def end_timer(self, name: str) -> float:
|
| 47 |
+
"""End timing and record duration"""
|
| 48 |
+
with self.lock:
|
| 49 |
+
if name in self.start_times:
|
| 50 |
+
duration = time.time() - self.start_times[name]
|
| 51 |
+
self.record_metric(f"{name}_duration", duration)
|
| 52 |
+
del self.start_times[name]
|
| 53 |
+
return duration
|
| 54 |
+
return 0.0
|
| 55 |
+
|
| 56 |
+
def record_metric(self, name: str, value: float) -> None:
|
| 57 |
+
"""Record a metric value"""
|
| 58 |
+
with self.lock:
|
| 59 |
+
self.metrics[name].append({
|
| 60 |
+
'value': value,
|
| 61 |
+
'timestamp': time.time()
|
| 62 |
+
})
|
| 63 |
+
# Keep only recent history
|
| 64 |
+
if len(self.metrics[name]) > self.max_history:
|
| 65 |
+
self.metrics[name] = self.metrics[name][-self.max_history:]
|
| 66 |
+
|
| 67 |
+
def increment_counter(self, name: str, amount: int = 1) -> None:
|
| 68 |
+
"""Increment a counter"""
|
| 69 |
+
with self.lock:
|
| 70 |
+
self.counters[name] += amount
|
| 71 |
+
|
| 72 |
+
def get_stats(self, name: str) -> Dict[str, float]:
|
| 73 |
+
"""Get statistics for a metric"""
|
| 74 |
+
with self.lock:
|
| 75 |
+
if name not in self.metrics or not self.metrics[name]:
|
| 76 |
+
return {}
|
| 77 |
+
|
| 78 |
+
values = [m['value'] for m in self.metrics[name]]
|
| 79 |
+
return {
|
| 80 |
+
'count': len(values),
|
| 81 |
+
'mean': np.mean(values),
|
| 82 |
+
'std': np.std(values),
|
| 83 |
+
'min': np.min(values),
|
| 84 |
+
'max': np.max(values),
|
| 85 |
+
'median': np.median(values),
|
| 86 |
+
'recent': values[-10:] if len(values) >= 10 else values
|
| 87 |
+
}
|
| 88 |
+
|
| 89 |
+
def get_summary(self) -> Dict[str, Any]:
|
| 90 |
+
"""Get complete performance summary"""
|
| 91 |
+
with self.lock:
|
| 92 |
+
summary = {
|
| 93 |
+
'metrics': {name: self.get_stats(name) for name in self.metrics},
|
| 94 |
+
'counters': dict(self.counters),
|
| 95 |
+
'active_timers': list(self.start_times.keys()),
|
| 96 |
+
'timestamp': datetime.now().isoformat()
|
| 97 |
+
}
|
| 98 |
+
return summary
|
| 99 |
+
|
| 100 |
+
# Global performance monitor instance
|
| 101 |
+
perf_monitor = PerformanceMonitor()
|
| 102 |
+
|
| 103 |
+
def monitor_performance(func_name: str = None):
|
| 104 |
+
"""Decorator to monitor function performance"""
|
| 105 |
+
def decorator(func):
|
| 106 |
+
name = func_name or f"{func.__module__}.{func.__name__}"
|
| 107 |
+
|
| 108 |
+
@wraps(func)
|
| 109 |
+
def wrapper(*args, **kwargs):
|
| 110 |
+
perf_monitor.start_timer(name)
|
| 111 |
+
perf_monitor.increment_counter(f"{name}_calls")
|
| 112 |
+
try:
|
| 113 |
+
result = func(*args, **kwargs)
|
| 114 |
+
perf_monitor.increment_counter(f"{name}_success")
|
| 115 |
+
return result
|
| 116 |
+
except Exception as e:
|
| 117 |
+
perf_monitor.increment_counter(f"{name}_errors")
|
| 118 |
+
raise
|
| 119 |
+
finally:
|
| 120 |
+
perf_monitor.end_timer(name)
|
| 121 |
+
|
| 122 |
+
return wrapper
|
| 123 |
+
return decorator
|
| 124 |
+
|
| 125 |
+
# =============================================================================
|
| 126 |
+
# MEMORY MANAGEMENT UTILITIES
|
| 127 |
+
# =============================================================================
|
| 128 |
+
|
| 129 |
+
class MemoryTracker:
|
| 130 |
+
"""Track memory usage across the swarm system"""
|
| 131 |
+
|
| 132 |
+
@staticmethod
|
| 133 |
+
def get_memory_info() -> Dict[str, float]:
|
| 134 |
+
"""Get current memory information"""
|
| 135 |
+
process = psutil.Process()
|
| 136 |
+
memory_info = process.memory_info()
|
| 137 |
+
virtual_memory = psutil.virtual_memory()
|
| 138 |
+
|
| 139 |
+
gpu_memory = {}
|
| 140 |
+
if torch.cuda.is_available():
|
| 141 |
+
for i in range(torch.cuda.device_count()):
|
| 142 |
+
gpu_memory[f'gpu_{i}'] = {
|
| 143 |
+
'allocated': torch.cuda.memory_allocated(i) / 1024**3,
|
| 144 |
+
'cached': torch.cuda.memory_reserved(i) / 1024**3,
|
| 145 |
+
'max_allocated': torch.cuda.max_memory_allocated(i) / 1024**3
|
| 146 |
+
}
|
| 147 |
+
|
| 148 |
+
return {
|
| 149 |
+
'process_memory_gb': memory_info.rss / 1024**3,
|
| 150 |
+
'system_memory_percent': virtual_memory.percent,
|
| 151 |
+
'system_memory_available_gb': virtual_memory.available / 1024**3,
|
| 152 |
+
'gpu_memory': gpu_memory
|
| 153 |
+
}
|
| 154 |
+
|
| 155 |
+
@staticmethod
|
| 156 |
+
def clear_gpu_cache():
|
| 157 |
+
"""Clear GPU memory cache"""
|
| 158 |
+
if torch.cuda.is_available():
|
| 159 |
+
torch.cuda.empty_cache()
|
| 160 |
+
gc.collect()
|
| 161 |
+
|
| 162 |
+
@staticmethod
|
| 163 |
+
def optimize_memory():
|
| 164 |
+
"""Perform memory optimization"""
|
| 165 |
+
gc.collect()
|
| 166 |
+
if torch.cuda.is_available():
|
| 167 |
+
torch.cuda.empty_cache()
|
| 168 |
+
|
| 169 |
+
def memory_efficient(clear_cache: bool = True):
|
| 170 |
+
"""Decorator for memory-efficient functions"""
|
| 171 |
+
def decorator(func):
|
| 172 |
+
@wraps(func)
|
| 173 |
+
def wrapper(*args, **kwargs):
|
| 174 |
+
if clear_cache:
|
| 175 |
+
MemoryTracker.clear_gpu_cache()
|
| 176 |
+
|
| 177 |
+
try:
|
| 178 |
+
result = func(*args, **kwargs)
|
| 179 |
+
return result
|
| 180 |
+
finally:
|
| 181 |
+
if clear_cache:
|
| 182 |
+
MemoryTracker.clear_gpu_cache()
|
| 183 |
+
|
| 184 |
+
return wrapper
|
| 185 |
+
return decorator
|
| 186 |
+
|
| 187 |
+
# =============================================================================
|
| 188 |
+
# TENSOR UTILITIES
|
| 189 |
+
# =============================================================================
|
| 190 |
+
|
| 191 |
+
class TensorUtils:
|
| 192 |
+
"""Utility functions for tensor operations"""
|
| 193 |
+
|
| 194 |
+
@staticmethod
|
| 195 |
+
def safe_tensor_to_device(tensor: torch.Tensor, device: torch.device) -> torch.Tensor:
|
| 196 |
+
"""Safely move tensor to device with error handling"""
|
| 197 |
+
try:
|
| 198 |
+
if tensor.device != device:
|
| 199 |
+
return tensor.to(device)
|
| 200 |
+
return tensor
|
| 201 |
+
except RuntimeError as e:
|
| 202 |
+
logger.warning(f"Failed to move tensor to {device}: {e}")
|
| 203 |
+
return tensor
|
| 204 |
+
|
| 205 |
+
@staticmethod
|
| 206 |
+
def get_tensor_info(tensor: torch.Tensor) -> Dict[str, Any]:
|
| 207 |
+
"""Get comprehensive tensor information"""
|
| 208 |
+
return {
|
| 209 |
+
'shape': list(tensor.shape),
|
| 210 |
+
'dtype': str(tensor.dtype),
|
| 211 |
+
'device': str(tensor.device),
|
| 212 |
+
'requires_grad': tensor.requires_grad,
|
| 213 |
+
'memory_mb': tensor.numel() * tensor.element_size() / 1024**2,
|
| 214 |
+
'is_contiguous': tensor.is_contiguous(),
|
| 215 |
+
'stride': tensor.stride() if tensor.dim() > 0 else []
|
| 216 |
+
}
|
| 217 |
+
|
| 218 |
+
@staticmethod
|
| 219 |
+
def batch_tensors(tensors: List[torch.Tensor], pad_value: float = 0.0) -> torch.Tensor:
|
| 220 |
+
"""Batch tensors with padding to same length"""
|
| 221 |
+
if not tensors:
|
| 222 |
+
return torch.empty(0)
|
| 223 |
+
|
| 224 |
+
max_len = max(t.size(-1) for t in tensors)
|
| 225 |
+
batch_size = len(tensors)
|
| 226 |
+
|
| 227 |
+
if len(tensors[0].shape) == 1:
|
| 228 |
+
batched = torch.full((batch_size, max_len), pad_value, dtype=tensors[0].dtype, device=tensors[0].device)
|
| 229 |
+
else:
|
| 230 |
+
feature_dim = tensors[0].size(-2)
|
| 231 |
+
batched = torch.full((batch_size, feature_dim, max_len), pad_value, dtype=tensors[0].dtype, device=tensors[0].device)
|
| 232 |
+
|
| 233 |
+
for i, tensor in enumerate(tensors):
|
| 234 |
+
if len(tensor.shape) == 1:
|
| 235 |
+
batched[i, :tensor.size(0)] = tensor
|
| 236 |
+
else:
|
| 237 |
+
batched[i, :, :tensor.size(-1)] = tensor
|
| 238 |
+
|
| 239 |
+
return batched
|
| 240 |
+
|
| 241 |
+
@staticmethod
|
| 242 |
+
def split_tensor_by_chunks(tensor: torch.Tensor, chunk_size: int) -> List[torch.Tensor]:
|
| 243 |
+
"""Split tensor into chunks of specified size"""
|
| 244 |
+
if tensor.size(0) <= chunk_size:
|
| 245 |
+
return [tensor]
|
| 246 |
+
|
| 247 |
+
return [tensor[i:i + chunk_size] for i in range(0, tensor.size(0), chunk_size)]
|
| 248 |
+
|
| 249 |
+
# =============================================================================
|
| 250 |
+
# ROUTING UTILITIES
|
| 251 |
+
# =============================================================================
|
| 252 |
+
|
| 253 |
+
class RoutingUtils:
|
| 254 |
+
"""Utilities for encoder routing and load balancing"""
|
| 255 |
+
|
| 256 |
+
@staticmethod
|
| 257 |
+
def calculate_load_balance_loss(routing_weights: torch.Tensor, epsilon: float = 1e-8) -> torch.Tensor:
|
| 258 |
+
"""Calculate load balance loss to encourage equal encoder usage"""
|
| 259 |
+
# routing_weights: [batch_size, seq_len, num_encoders]
|
| 260 |
+
avg_routing = routing_weights.mean(dim=[0, 1]) # [num_encoders]
|
| 261 |
+
|
| 262 |
+
# Variance penalty to encourage uniform distribution
|
| 263 |
+
target_load = 1.0 / routing_weights.size(-1)
|
| 264 |
+
load_balance_loss = torch.var(avg_routing) / (target_load ** 2 + epsilon)
|
| 265 |
+
|
| 266 |
+
return load_balance_loss
|
| 267 |
+
|
| 268 |
+
@staticmethod
|
| 269 |
+
def apply_top_k_routing(logits: torch.Tensor, k: int) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 270 |
+
"""Apply top-k routing with Gumbel softmax"""
|
| 271 |
+
# Get top-k indices
|
| 272 |
+
top_k_logits, top_k_indices = torch.topk(logits, k, dim=-1)
|
| 273 |
+
|
| 274 |
+
# Create mask for top-k
|
| 275 |
+
mask = torch.zeros_like(logits)
|
| 276 |
+
mask.scatter_(-1, top_k_indices, 1.0)
|
| 277 |
+
|
| 278 |
+
# Apply Gumbel softmax to top-k
|
| 279 |
+
gumbel_noise = -torch.log(-torch.log(torch.rand_like(top_k_logits) + 1e-8) + 1e-8)
|
| 280 |
+
top_k_weights = F.softmax((top_k_logits + gumbel_noise) / 1.0, dim=-1)
|
| 281 |
+
|
| 282 |
+
# Reconstruct full weights
|
| 283 |
+
weights = torch.zeros_like(logits)
|
| 284 |
+
weights.scatter_(-1, top_k_indices, top_k_weights)
|
| 285 |
+
|
| 286 |
+
return weights, mask
|
| 287 |
+
|
| 288 |
+
@staticmethod
|
| 289 |
+
def entropy_regularization(routing_weights: torch.Tensor) -> torch.Tensor:
|
| 290 |
+
"""Add entropy regularization to encourage exploration"""
|
| 291 |
+
# Avoid log(0)
|
| 292 |
+
routing_weights = torch.clamp(routing_weights, min=1e-8)
|
| 293 |
+
entropy = -torch.sum(routing_weights * torch.log(routing_weights), dim=-1)
|
| 294 |
+
return -entropy.mean() # Negative because we want to maximize entropy
|
| 295 |
+
|
| 296 |
+
# =============================================================================
|
| 297 |
+
# TEXT PROCESSING UTILITIES
|
| 298 |
+
# =============================================================================
|
| 299 |
+
|
| 300 |
+
class TextUtils:
|
| 301 |
+
"""Utilities for text processing and analysis"""
|
| 302 |
+
|
| 303 |
+
@staticmethod
|
| 304 |
+
def chunk_text(text: str, chunk_size: int = 512, overlap: int = 50) -> List[str]:
|
| 305 |
+
"""Split text into overlapping chunks"""
|
| 306 |
+
words = text.split()
|
| 307 |
+
if len(words) <= chunk_size:
|
| 308 |
+
return [text]
|
| 309 |
+
|
| 310 |
+
chunks = []
|
| 311 |
+
start = 0
|
| 312 |
+
|
| 313 |
+
while start < len(words):
|
| 314 |
+
end = min(start + chunk_size, len(words))
|
| 315 |
+
chunk = ' '.join(words[start:end])
|
| 316 |
+
chunks.append(chunk)
|
| 317 |
+
|
| 318 |
+
if end >= len(words):
|
| 319 |
+
break
|
| 320 |
+
|
| 321 |
+
start = end - overlap
|
| 322 |
+
|
| 323 |
+
return chunks
|
| 324 |
+
|
| 325 |
+
@staticmethod
|
| 326 |
+
def estimate_tokens(text: str, chars_per_token: float = 4.0) -> int:
|
| 327 |
+
"""Estimate number of tokens in text"""
|
| 328 |
+
return max(1, int(len(text) / chars_per_token))
|
| 329 |
+
|
| 330 |
+
@staticmethod
|
| 331 |
+
def clean_text(text: str) -> str:
|
| 332 |
+
"""Clean and normalize text"""
|
| 333 |
+
if not text:
|
| 334 |
+
return ""
|
| 335 |
+
|
| 336 |
+
# Remove excessive whitespace
|
| 337 |
+
text = ' '.join(text.split())
|
| 338 |
+
|
| 339 |
+
# Remove control characters
|
| 340 |
+
text = ''.join(char for char in text if ord(char) >= 32 or char in '\n\t')
|
| 341 |
+
|
| 342 |
+
return text.strip()
|
| 343 |
+
|
| 344 |
+
@staticmethod
|
| 345 |
+
def detect_language(text: str) -> str:
|
| 346 |
+
"""Simple language detection based on character patterns"""
|
| 347 |
+
# This is a simplified version - for production, use langdetect library
|
| 348 |
+
if not text:
|
| 349 |
+
return "unknown"
|
| 350 |
+
|
| 351 |
+
# Count character types
|
| 352 |
+
ascii_count = sum(1 for c in text if ord(c) < 128)
|
| 353 |
+
total_chars = len(text)
|
| 354 |
+
|
| 355 |
+
if total_chars == 0:
|
| 356 |
+
return "unknown"
|
| 357 |
+
|
| 358 |
+
ascii_ratio = ascii_count / total_chars
|
| 359 |
+
|
| 360 |
+
if ascii_ratio > 0.9:
|
| 361 |
+
return "en" # Likely English
|
| 362 |
+
elif ascii_ratio > 0.7:
|
| 363 |
+
return "mixed"
|
| 364 |
+
else:
|
| 365 |
+
return "non-latin"
|
| 366 |
+
|
| 367 |
+
# =============================================================================
|
| 368 |
+
# CONFIGURATION UTILITIES
|
| 369 |
+
# =============================================================================
|
| 370 |
+
|
| 371 |
+
class ConfigUtils:
|
| 372 |
+
"""Utilities for configuration management"""
|
| 373 |
+
|
| 374 |
+
@staticmethod
|
| 375 |
+
def load_config(config_path: str) -> Dict[str, Any]:
|
| 376 |
+
"""Load configuration from JSON file"""
|
| 377 |
+
try:
|
| 378 |
+
with open(config_path, 'r', encoding='utf-8') as f:
|
| 379 |
+
config = json.load(f)
|
| 380 |
+
logger.info(f"Loaded configuration from {config_path}")
|
| 381 |
+
return config
|
| 382 |
+
except Exception as e:
|
| 383 |
+
logger.error(f"Failed to load config from {config_path}: {e}")
|
| 384 |
+
return {}
|
| 385 |
+
|
| 386 |
+
@staticmethod
|
| 387 |
+
def save_config(config: Dict[str, Any], config_path: str) -> bool:
|
| 388 |
+
"""Save configuration to JSON file"""
|
| 389 |
+
try:
|
| 390 |
+
os.makedirs(os.path.dirname(config_path), exist_ok=True)
|
| 391 |
+
with open(config_path, 'w', encoding='utf-8') as f:
|
| 392 |
+
json.dump(config, f, indent=2, ensure_ascii=False)
|
| 393 |
+
logger.info(f"Saved configuration to {config_path}")
|
| 394 |
+
return True
|
| 395 |
+
except Exception as e:
|
| 396 |
+
logger.error(f"Failed to save config to {config_path}: {e}")
|
| 397 |
+
return False
|
| 398 |
+
|
| 399 |
+
@staticmethod
|
| 400 |
+
def merge_configs(base_config: Dict[str, Any], override_config: Dict[str, Any]) -> Dict[str, Any]:
|
| 401 |
+
"""Merge two configuration dictionaries"""
|
| 402 |
+
merged = base_config.copy()
|
| 403 |
+
|
| 404 |
+
for key, value in override_config.items():
|
| 405 |
+
if key in merged and isinstance(merged[key], dict) and isinstance(value, dict):
|
| 406 |
+
merged[key] = ConfigUtils.merge_configs(merged[key], value)
|
| 407 |
+
else:
|
| 408 |
+
merged[key] = value
|
| 409 |
+
|
| 410 |
+
return merged
|
| 411 |
+
|
| 412 |
+
@staticmethod
|
| 413 |
+
def validate_config(config: Dict[str, Any], required_keys: List[str]) -> List[str]:
|
| 414 |
+
"""Validate configuration has required keys"""
|
| 415 |
+
missing_keys = []
|
| 416 |
+
|
| 417 |
+
for key in required_keys:
|
| 418 |
+
if '.' in key:
|
| 419 |
+
# Handle nested keys
|
| 420 |
+
keys = key.split('.')
|
| 421 |
+
current = config
|
| 422 |
+
for k in keys:
|
| 423 |
+
if not isinstance(current, dict) or k not in current:
|
| 424 |
+
missing_keys.append(key)
|
| 425 |
+
break
|
| 426 |
+
current = current[k]
|
| 427 |
+
elif key not in config:
|
| 428 |
+
missing_keys.append(key)
|
| 429 |
+
|
| 430 |
+
return missing_keys
|
| 431 |
+
|
| 432 |
+
# =============================================================================
|
| 433 |
+
# CACHING UTILITIES
|
| 434 |
+
# =============================================================================
|
| 435 |
+
|
| 436 |
+
class CacheManager:
|
| 437 |
+
"""Intelligent caching for model outputs and computations"""
|
| 438 |
+
|
| 439 |
+
def __init__(self, max_size: int = 1000, ttl_seconds: int = 3600):
|
| 440 |
+
self.max_size = max_size
|
| 441 |
+
self.ttl_seconds = ttl_seconds
|
| 442 |
+
self.cache = {}
|
| 443 |
+
self.access_times = {}
|
| 444 |
+
self.lock = threading.Lock()
|
| 445 |
+
|
| 446 |
+
def _generate_key(self, *args, **kwargs) -> str:
|
| 447 |
+
"""Generate cache key from arguments"""
|
| 448 |
+
key_data = {
|
| 449 |
+
'args': args,
|
| 450 |
+
'kwargs': sorted(kwargs.items())
|
| 451 |
+
}
|
| 452 |
+
return hashlib.md5(pickle.dumps(key_data)).hexdigest()
|
| 453 |
+
|
| 454 |
+
def get(self, key: str) -> Optional[Any]:
|
| 455 |
+
"""Get item from cache"""
|
| 456 |
+
with self.lock:
|
| 457 |
+
if key not in self.cache:
|
| 458 |
+
return None
|
| 459 |
+
|
| 460 |
+
# Check TTL
|
| 461 |
+
if time.time() - self.cache[key]['timestamp'] > self.ttl_seconds:
|
| 462 |
+
self._remove_key(key)
|
| 463 |
+
return None
|
| 464 |
+
|
| 465 |
+
self.access_times[key] = time.time()
|
| 466 |
+
return self.cache[key]['value']
|
| 467 |
+
|
| 468 |
+
def put(self, key: str, value: Any) -> None:
|
| 469 |
+
"""Put item in cache"""
|
| 470 |
+
with self.lock:
|
| 471 |
+
# Clean up if cache is full
|
| 472 |
+
if len(self.cache) >= self.max_size:
|
| 473 |
+
self._evict_lru()
|
| 474 |
+
|
| 475 |
+
self.cache[key] = {
|
| 476 |
+
'value': value,
|
| 477 |
+
'timestamp': time.time()
|
| 478 |
+
}
|
| 479 |
+
self.access_times[key] = time.time()
|
| 480 |
+
|
| 481 |
+
def _remove_key(self, key: str) -> None:
|
| 482 |
+
"""Remove key from cache"""
|
| 483 |
+
if key in self.cache:
|
| 484 |
+
del self.cache[key]
|
| 485 |
+
if key in self.access_times:
|
| 486 |
+
del self.access_times[key]
|
| 487 |
+
|
| 488 |
+
def _evict_lru(self) -> None:
|
| 489 |
+
"""Evict least recently used item"""
|
| 490 |
+
if not self.access_times:
|
| 491 |
+
return
|
| 492 |
+
|
| 493 |
+
lru_key = min(self.access_times.keys(), key=lambda k: self.access_times[k])
|
| 494 |
+
self._remove_key(lru_key)
|
| 495 |
+
|
| 496 |
+
def clear(self) -> None:
|
| 497 |
+
"""Clear all cached items"""
|
| 498 |
+
with self.lock:
|
| 499 |
+
self.cache.clear()
|
| 500 |
+
self.access_times.clear()
|
| 501 |
+
|
| 502 |
+
def stats(self) -> Dict[str, Any]:
|
| 503 |
+
"""Get cache statistics"""
|
| 504 |
+
with self.lock:
|
| 505 |
+
return {
|
| 506 |
+
'size': len(self.cache),
|
| 507 |
+
'max_size': self.max_size,
|
| 508 |
+
'hit_ratio': getattr(self, '_hits', 0) / max(getattr(self, '_requests', 1), 1),
|
| 509 |
+
'ttl_seconds': self.ttl_seconds
|
| 510 |
+
}
|
| 511 |
+
|
| 512 |
+
# Global cache manager
|
| 513 |
+
cache_manager = CacheManager()
|
| 514 |
+
|
| 515 |
+
def cached(ttl_seconds: int = 3600):
|
| 516 |
+
"""Decorator for caching function results"""
|
| 517 |
+
def decorator(func):
|
| 518 |
+
@wraps(func)
|
| 519 |
+
def wrapper(*args, **kwargs):
|
| 520 |
+
cache_key = cache_manager._generate_key(func.__name__, *args, **kwargs)
|
| 521 |
+
|
| 522 |
+
# Try to get from cache
|
| 523 |
+
result = cache_manager.get(cache_key)
|
| 524 |
+
if result is not None:
|
| 525 |
+
return result
|
| 526 |
+
|
| 527 |
+
# Compute and cache
|
| 528 |
+
result = func(*args, **kwargs)
|
| 529 |
+
cache_manager.put(cache_key, result)
|
| 530 |
+
|
| 531 |
+
return result
|
| 532 |
+
|
| 533 |
+
return wrapper
|
| 534 |
+
return decorator
|
| 535 |
+
|
| 536 |
+
# =============================================================================
|
| 537 |
+
# DEBUGGING AND LOGGING UTILITIES
|
| 538 |
+
# =============================================================================
|
| 539 |
+
|
| 540 |
+
class DebugUtils:
|
| 541 |
+
"""Utilities for debugging the swarm architecture"""
|
| 542 |
+
|
| 543 |
+
@staticmethod
|
| 544 |
+
def log_tensor_stats(tensor: torch.Tensor, name: str) -> None:
|
| 545 |
+
"""Log comprehensive tensor statistics"""
|
| 546 |
+
if not tensor.numel():
|
| 547 |
+
logger.debug(f"{name}: Empty tensor")
|
| 548 |
+
return
|
| 549 |
+
|
| 550 |
+
stats = {
|
| 551 |
+
'shape': list(tensor.shape),
|
| 552 |
+
'dtype': str(tensor.dtype),
|
| 553 |
+
'device': str(tensor.device),
|
| 554 |
+
'mean': tensor.float().mean().item(),
|
| 555 |
+
'std': tensor.float().std().item(),
|
| 556 |
+
'min': tensor.min().item(),
|
| 557 |
+
'max': tensor.max().item(),
|
| 558 |
+
'has_nan': torch.isnan(tensor).any().item(),
|
| 559 |
+
'has_inf': torch.isinf(tensor).any().item()
|
| 560 |
+
}
|
| 561 |
+
|
| 562 |
+
logger.debug(f"{name} stats: {stats}")
|
| 563 |
+
|
| 564 |
+
@staticmethod
|
| 565 |
+
def validate_tensor(tensor: torch.Tensor, name: str, check_finite: bool = True) -> bool:
|
| 566 |
+
"""Validate tensor for common issues"""
|
| 567 |
+
if not isinstance(tensor, torch.Tensor):
|
| 568 |
+
logger.error(f"{name}: Not a tensor, got {type(tensor)}")
|
| 569 |
+
return False
|
| 570 |
+
|
| 571 |
+
if tensor.numel() == 0:
|
| 572 |
+
logger.warning(f"{name}: Empty tensor")
|
| 573 |
+
return False
|
| 574 |
+
|
| 575 |
+
if check_finite:
|
| 576 |
+
if torch.isnan(tensor).any():
|
| 577 |
+
logger.error(f"{name}: Contains NaN values")
|
| 578 |
+
return False
|
| 579 |
+
|
| 580 |
+
if torch.isinf(tensor).any():
|
| 581 |
+
logger.error(f"{name}: Contains infinite values")
|
| 582 |
+
return False
|
| 583 |
+
|
| 584 |
+
return True
|
| 585 |
+
|
| 586 |
+
@staticmethod
|
| 587 |
+
def trace_function_calls(func):
|
| 588 |
+
"""Decorator to trace function calls"""
|
| 589 |
+
@wraps(func)
|
| 590 |
+
def wrapper(*args, **kwargs):
|
| 591 |
+
logger.debug(f"Calling {func.__name__} with args: {len(args)}, kwargs: {list(kwargs.keys())}")
|
| 592 |
+
start_time = time.time()
|
| 593 |
+
|
| 594 |
+
try:
|
| 595 |
+
result = func(*args, **kwargs)
|
| 596 |
+
duration = time.time() - start_time
|
| 597 |
+
logger.debug(f"{func.__name__} completed in {duration:.4f}s")
|
| 598 |
+
return result
|
| 599 |
+
except Exception as e:
|
| 600 |
+
duration = time.time() - start_time
|
| 601 |
+
logger.error(f"{func.__name__} failed after {duration:.4f}s: {e}")
|
| 602 |
+
raise
|
| 603 |
+
|
| 604 |
+
return wrapper
|
| 605 |
+
|
| 606 |
+
# =============================================================================
|
| 607 |
+
# SYSTEM UTILITIES
|
| 608 |
+
# =============================================================================
|
| 609 |
+
|
| 610 |
+
class SystemUtils:
|
| 611 |
+
"""System-level utilities"""
|
| 612 |
+
|
| 613 |
+
@staticmethod
|
| 614 |
+
def get_system_info() -> Dict[str, Any]:
|
| 615 |
+
"""Get comprehensive system information"""
|
| 616 |
+
cpu_info = {
|
| 617 |
+
'cpu_count': psutil.cpu_count(),
|
| 618 |
+
'cpu_percent': psutil.cpu_percent(interval=1),
|
| 619 |
+
'load_average': os.getloadavg() if hasattr(os, 'getloadavg') else None
|
| 620 |
+
}
|
| 621 |
+
|
| 622 |
+
memory_info = psutil.virtual_memory()._asdict()
|
| 623 |
+
|
| 624 |
+
gpu_info = {}
|
| 625 |
+
if torch.cuda.is_available():
|
| 626 |
+
gpu_info = {
|
| 627 |
+
'device_count': torch.cuda.device_count(),
|
| 628 |
+
'current_device': torch.cuda.current_device(),
|
| 629 |
+
'devices': [
|
| 630 |
+
{
|
| 631 |
+
'name': torch.cuda.get_device_name(i),
|
| 632 |
+
'memory_total': torch.cuda.get_device_properties(i).total_memory,
|
| 633 |
+
'memory_allocated': torch.cuda.memory_allocated(i),
|
| 634 |
+
'memory_cached': torch.cuda.memory_reserved(i)
|
| 635 |
+
}
|
| 636 |
+
for i in range(torch.cuda.device_count())
|
| 637 |
+
]
|
| 638 |
+
}
|
| 639 |
+
|
| 640 |
+
return {
|
| 641 |
+
'cpu': cpu_info,
|
| 642 |
+
'memory': memory_info,
|
| 643 |
+
'gpu': gpu_info,
|
| 644 |
+
'python_version': f"{__import__('sys').version_info.major}.{__import__('sys').version_info.minor}",
|
| 645 |
+
'torch_version': torch.__version__,
|
| 646 |
+
'timestamp': datetime.now().isoformat()
|
| 647 |
+
}
|
| 648 |
+
|
| 649 |
+
@staticmethod
|
| 650 |
+
def ensure_directory(path: str) -> None:
|
| 651 |
+
"""Ensure directory exists"""
|
| 652 |
+
os.makedirs(path, exist_ok=True)
|
| 653 |
+
|
| 654 |
+
@staticmethod
|
| 655 |
+
def safe_file_write(content: str, filepath: str, backup: bool = True) -> bool:
|
| 656 |
+
"""Safely write content to file with backup"""
|
| 657 |
+
try:
|
| 658 |
+
# Create directory if needed
|
| 659 |
+
os.makedirs(os.path.dirname(filepath), exist_ok=True)
|
| 660 |
+
|
| 661 |
+
# Create backup if file exists
|
| 662 |
+
if backup and os.path.exists(filepath):
|
| 663 |
+
backup_path = f"{filepath}.backup"
|
| 664 |
+
import shutil
|
| 665 |
+
shutil.copy2(filepath, backup_path)
|
| 666 |
+
|
| 667 |
+
# Write content
|
| 668 |
+
with open(filepath, 'w', encoding='utf-8') as f:
|
| 669 |
+
f.write(content)
|
| 670 |
+
|
| 671 |
+
return True
|
| 672 |
+
except Exception as e:
|
| 673 |
+
logger.error(f"Failed to write file {filepath}: {e}")
|
| 674 |
+
return False
|
| 675 |
+
|
| 676 |
+
# =============================================================================
|
| 677 |
+
# EXPORT UTILITIES
|
| 678 |
+
# =============================================================================
|
| 679 |
+
|
| 680 |
+
def format_model_size(num_params: int) -> str:
|
| 681 |
+
"""Format model size in human-readable format"""
|
| 682 |
+
for unit in ['', 'K', 'M', 'B', 'T']:
|
| 683 |
+
if num_params < 1000:
|
| 684 |
+
return f"{num_params:.1f}{unit}"
|
| 685 |
+
num_params /= 1000
|
| 686 |
+
return f"{num_params:.1f}P"
|
| 687 |
+
|
| 688 |
+
def format_memory_size(bytes_size: int) -> str:
|
| 689 |
+
"""Format memory size in human-readable format"""
|
| 690 |
+
for unit in ['B', 'KB', 'MB', 'GB', 'TB']:
|
| 691 |
+
if bytes_size < 1024:
|
| 692 |
+
return f"{bytes_size:.1f}{unit}"
|
| 693 |
+
bytes_size /= 1024
|
| 694 |
+
return f"{bytes_size:.1f}PB"
|
| 695 |
+
|
| 696 |
+
def format_duration(seconds: float) -> str:
|
| 697 |
+
"""Format duration in human-readable format"""
|
| 698 |
+
if seconds < 1:
|
| 699 |
+
return f"{seconds*1000:.1f}ms"
|
| 700 |
+
elif seconds < 60:
|
| 701 |
+
return f"{seconds:.1f}s"
|
| 702 |
+
elif seconds < 3600:
|
| 703 |
+
minutes = seconds / 60
|
| 704 |
+
return f"{minutes:.1f}m"
|
| 705 |
+
else:
|
| 706 |
+
hours = seconds / 3600
|
| 707 |
+
return f"{hours:.1f}h"
|
| 708 |
+
|
| 709 |
+
# =============================================================================
|
| 710 |
+
# INITIALIZATION
|
| 711 |
+
# =============================================================================
|
| 712 |
+
|
| 713 |
+
def initialize_logging(log_level: str = "INFO", log_file: Optional[str] = None) -> None:
|
| 714 |
+
"""Initialize logging configuration"""
|
| 715 |
+
level = getattr(logging, log_level.upper(), logging.INFO)
|
| 716 |
+
|
| 717 |
+
handlers = [logging.StreamHandler()]
|
| 718 |
+
if log_file:
|
| 719 |
+
handlers.append(logging.FileHandler(log_file))
|
| 720 |
+
|
| 721 |
+
logging.basicConfig(
|
| 722 |
+
level=level,
|
| 723 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
| 724 |
+
handlers=handlers
|
| 725 |
+
)
|
| 726 |
+
|
| 727 |
+
def setup_warnings() -> None:
|
| 728 |
+
"""Setup warning filters"""
|
| 729 |
+
# Filter out common warnings that don't affect functionality
|
| 730 |
+
warnings.filterwarnings("ignore", category=UserWarning, module="torch")
|
| 731 |
+
warnings.filterwarnings("ignore", category=FutureWarning, module="transformers")
|
| 732 |
+
|
| 733 |
+
# Initialize on import
|
| 734 |
+
setup_warnings()
|
| 735 |
+
|
| 736 |
+
# =============================================================================
|
| 737 |
+
# MAIN UTILITIES EXPORT
|
| 738 |
+
# =============================================================================
|
| 739 |
+
|
| 740 |
+
__all__ = [
|
| 741 |
+
# Performance monitoring
|
| 742 |
+
'PerformanceMonitor', 'perf_monitor', 'monitor_performance',
|
| 743 |
+
|
| 744 |
+
# Memory management
|
| 745 |
+
'MemoryTracker', 'memory_efficient',
|
| 746 |
+
|
| 747 |
+
# Tensor utilities
|
| 748 |
+
'TensorUtils',
|
| 749 |
+
|
| 750 |
+
# Routing utilities
|
| 751 |
+
'RoutingUtils',
|
| 752 |
+
|
| 753 |
+
# Text processing
|
| 754 |
+
'TextUtils',
|
| 755 |
+
|
| 756 |
+
# Configuration
|
| 757 |
+
'ConfigUtils',
|
| 758 |
+
|
| 759 |
+
# Caching
|
| 760 |
+
'CacheManager', 'cache_manager', 'cached',
|
| 761 |
+
|
| 762 |
+
# Debugging
|
| 763 |
+
'DebugUtils',
|
| 764 |
+
|
| 765 |
+
# System utilities
|
| 766 |
+
'SystemUtils',
|
| 767 |
+
|
| 768 |
+
# Formatting utilities
|
| 769 |
+
'format_model_size', 'format_memory_size', 'format_duration',
|
| 770 |
+
|
| 771 |
+
# Initialization
|
| 772 |
+
'initialize_logging', 'setup_warnings'
|
| 773 |
+
]
|