Free-Img-EnhanceUpscaler-PRO / segment_utils.py
Deddy's picture
Upload 8 files
6ac308a verified
"""
Segment Utils
-------------
Utilitas segmentasi gambar berbasis MediaPipe dan mask biner untuk aplikasi image enhancer/upscaler:
- Segmentasi area: wajah, rambut, pakaian, dll.
- Membuat dan mengelola mask hasil segmentasi serta integrasi dengan class Croper
- Mendukung proses restore hasil generate ke gambar asli
Created by _drat | 2025
"""
import numpy as np
import mediapipe as mp
import uuid
import os
from PIL import Image
from mediapipe.tasks import python
from mediapipe.tasks.python import vision
from scipy.ndimage import binary_dilation
from croper import Croper
# Inisialisasi model segmentasi MediaPipe (load tflite model untuk multiclass selfie segmentation)
segment_model = "checkpoints/selfie_multiclass_256x256.tflite"
base_options = python.BaseOptions(model_asset_path=segment_model)
options = vision.ImageSegmenterOptions(base_options=base_options, output_category_mask=True)
segmenter = vision.ImageSegmenter.create_from_options(options)
# Fungsi untuk mengembalikan hasil generate ke gambar asli, dengan mask transparan hasil segmentasi
def restore_result(croper, category, generated_image):
square_length = croper.square_length
generated_image = generated_image.resize((square_length, square_length))
# Crop area hasil generate, lalu buat mask hasil restore
cropped_generated_image = generated_image.crop((croper.square_start_x, croper.square_start_y, croper.square_end_x, croper.square_end_y))
cropped_square_mask_image = get_restore_mask_image(croper, category, cropped_generated_image)
# Tempel hasil generate ke gambar asli dengan mask transparan
restored_image = croper.input_image.copy()
restored_image.paste(cropped_generated_image, (croper.origin_start_x, croper.origin_start_y), cropped_square_mask_image)
extension = 'png'
tmpPrefix = "/tmp/gradio/"
# targetDir = f"{tmpPrefix}output/"
targetDir = "output/"
if not os.path.exists(targetDir):
os.makedirs(targetDir)
path = f"{targetDir}{uuid.uuid4()}.{extension}"
restored_image.save(path, quality=100)
return restored_image, path
# Fungsi utama segmentasi gambar sesuai kategori
def segment_image(input_image, category, input_size, mask_expansion, mask_dilation):
mask_size = int(input_size)
mask_expansion = int(mask_expansion)
# Konversi input image ke format yang sesuai untuk MediaPipe
image = mp.Image(image_format=mp.ImageFormat.SRGB, data=np.asarray(input_image))
segmentation_result = segmenter.segment(image)
category_mask = segmentation_result.category_mask
category_mask_np = category_mask.numpy_view()
# Pilih fungsi pembentukan mask sesuai kategori segmentasi
if category == "hair":
target_mask = get_hair_mask(category_mask_np, mask_dilation)
elif category == "clothes":
target_mask = get_clothes_mask(category_mask_np, mask_dilation)
elif category == "face":
target_mask = get_face_mask(category_mask_np, mask_dilation)
else:
target_mask = get_face_mask(category_mask_np, mask_dilation)
# Buat objek Croper dengan mask hasil segmentasi, untuk crop & resize
croper = Croper(input_image, target_mask, mask_size, mask_expansion)
croper.corp_mask_image()
origin_area_image = croper.resized_square_image
return origin_area_image, croper # Kembalikan area hasil crop + objek croper
# Fungsi pembuat mask khusus area wajah (+opsi dilasi mask)
def get_face_mask(category_mask_np, dilation=1):
face_skin_mask = category_mask_np == 3
if dilation > 0:
face_skin_mask = binary_dilation(face_skin_mask, iterations=dilation)
return face_skin_mask
# Fungsi pembuat mask khusus area baju (dan kulit tubuh)
def get_clothes_mask(category_mask_np, dilation=1):
body_skin_mask = category_mask_np == 2
clothes_mask = category_mask_np == 4
combined_mask = np.logical_or(body_skin_mask, clothes_mask)
combined_mask = binary_dilation(combined_mask, iterations=4)
if dilation > 0:
combined_mask = binary_dilation(combined_mask, iterations=dilation)
return combined_mask
# Fungsi pembuat mask khusus area rambut
def get_hair_mask(category_mask_np, dilation=1):
hair_mask = category_mask_np == 1
if dilation > 0:
hair_mask = binary_dilation(hair_mask, iterations=dilation)
return hair_mask
# Fungsi untuk membuat mask kombinasi hasil generate dan area awal (untuk proses restore)
def get_restore_mask_image(croper, category, generated_image):
image = mp.Image(image_format=mp.ImageFormat.SRGB, data=np.asarray(generated_image))
segmentation_result = segmenter.segment(image)
category_mask = segmentation_result.category_mask
category_mask_np = category_mask.numpy_view()
if category == "hair":
target_mask = get_hair_mask(category_mask_np, 0)
elif category == "clothes":
target_mask = get_clothes_mask(category_mask_np, 0)
elif category == "face":
target_mask = get_face_mask(category_mask_np, 0)
# Gabungkan mask hasil segmentasi dan mask area awal croper
combined_mask = np.logical_or(target_mask, croper.corp_mask)
mask_image = Image.fromarray((combined_mask * 255).astype(np.uint8))
return mask_image