""" Image Upscaler App ------------------ Aplikasi AI berbasis Gradio yang memanfaatkan Stable Diffusion Upscaler untuk meningkatkan resolusi gambar. Tersedia juga fitur segmentasi & restorasi area tertentu pada gambar (misal: wajah). Aplikasi mendukung input prompt teks untuk conditioning hasil upscaling. Created by _drat | 2025 """ # Import library eksternal yang diperlukan import requests from PIL import Image from io import BytesIO from diffusers import StableDiffusionUpscalePipeline # Pipeline Stable Diffusion untuk upscaling gambar import torch import gradio as gr import time import spaces # Import fungsi segmentasi dan restorasi (definisi di segment_utils.py) from segment_utils import( segment_image, # Untuk segmentasi area penting pada gambar (misal: wajah) restore_result, # Untuk menggabungkan hasil upscaling dengan gambar asli ) # Setup device: gunakan CUDA (GPU) jika tersedia, jika tidak fallback ke CPU device = "cuda" if torch.cuda.is_available() else "cpu" print(f'{device} is available') # Debug: print device yang digunakan # Load model Stable Diffusion Upscaler dari HuggingFace model_id = "stabilityai/stable-diffusion-x4-upscaler" upscale_pipe = StableDiffusionUpscalePipeline.from_pretrained(model_id, torch_dtype=torch.float16) upscale_pipe = upscale_pipe.to(device) # Default prompt dan kategori (untuk input Gradio) DEFAULT_SRC_PROMPT = "a person with pefect face" DEFAULT_CATEGORY = "face" # Fungsi utama untuk membuat UI aplikasi Gradio def create_demo() -> gr.Blocks: # --- [ Function Definitions Tetap Seperti Asli Anda ] --- @spaces.GPU(duration=30) def upscale_image( input_image: Image, prompt: str, num_inference_steps: int = 10, ): time_cost_str = '' run_task_time = 0 run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str) upscaled_image = upscale_pipe( prompt=prompt, image=input_image, num_inference_steps=num_inference_steps, ).images[0] run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str) return upscaled_image, time_cost_str def get_time_cost(run_task_time, time_cost_str): now_time = int(time.time()*1000) if run_task_time == 0: time_cost_str = 'start' else: if time_cost_str != '': time_cost_str += f'-->' time_cost_str += f'{now_time - run_task_time}' run_task_time = now_time return run_task_time, time_cost_str # --- [ UI Section ] --- with gr.Blocks(css="creative_enhance.css") as demo: gr.HTML("""
Feature Image
🔬 AI Image Upscaler 🚀
Perbesar gambar HD otomatis, detail makin nyata!
""") # Input prompt & parameter di satu card with gr.Row(): with gr.Group(elem_id="control-card"): with gr.Row(): input_image_prompt = gr.Textbox( lines=1, label="🎯 Prompt AI (opsional)", value=DEFAULT_SRC_PROMPT, elem_id="input-image-prompt" ) num_inference_steps = gr.Number( label="⚙️ Steps (Quality)", value=5, elem_id="num-inference" ) generate_size = gr.Number( label="📐 Size (px)", value=512, elem_id="generate-size" ) g_btn = gr.Button("🪄 Upscale Sekarang", elem_id="upscale-btn") # Input & Output Gambar with gr.Row(): with gr.Column(scale=1): with gr.Group(elem_id="input-card"): gr.Markdown("
🖼️ Gambar Asli
") input_image = gr.Image(label="", type="pil", elem_id="input-image", show_label=False) gr.Markdown("
⬆️ JPG/PNG max 5MB
") with gr.Column(scale=1): with gr.Group(elem_id="output-card"): gr.Markdown("
💡 Upscale Preview
") restored_image = gr.Image(label="Hasil Akhir", format="png", type="pil", interactive=False) origin_area_image = gr.Image(label="", format="png", type="pil", interactive=False, visible=False) upscaled_image = gr.Image(label="Upscaled", format="png", type="pil", interactive=False) download_path = gr.File(label="⬇️ Download Image", interactive=False, elem_id="download-btn") gr.Markdown("
💾 Download hasil upscale PNG
") generated_cost = gr.Textbox(label="⏱️ Time (ms)", visible=True, interactive=False) # Hidden inputs untuk workflow category = gr.Textbox(label="Category", value=DEFAULT_CATEGORY, visible=False) mask_expansion = gr.Number(label="Mask Expansion", value=20, visible=False) mask_dilation = gr.Slider(minimum=0, maximum=10, value=2, step=1, label="Mask Dilation", visible=False) croper = gr.State() # Workflow chaining g_btn.click( fn=segment_image, inputs=[input_image, category, generate_size, mask_expansion, mask_dilation], outputs=[origin_area_image, croper], ).success( fn=upscale_image, inputs=[origin_area_image, input_image_prompt, num_inference_steps], outputs=[upscaled_image, generated_cost], ).success( fn=restore_result, inputs=[croper, category, upscaled_image], outputs=[restored_image, download_path], ) gr.Markdown("""
© 2025 AI Image Upscaler • Powered by _drat 🚀
""") return demo