Spaces:
Running
Running
import requests | |
from PIL import Image | |
from io import BytesIO | |
from diffusers import StableDiffusionUpscalePipeline | |
import torch | |
import gradio as gr | |
import time | |
import spaces | |
from segment_utils import( | |
segment_image, | |
restore_result, | |
) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
print(f'{device} is available') | |
model_id = "stabilityai/stable-diffusion-x4-upscaler" | |
upscale_pipe = StableDiffusionUpscalePipeline.from_pretrained(model_id, torch_dtype=torch.float16) | |
upscale_pipe = upscale_pipe.to(device) | |
DEFAULT_SRC_PROMPT = "a person with pefect face" | |
DEFAULT_CATEGORY = "face" | |
def create_demo() -> gr.Blocks: | |
def upscale_image( | |
input_image: Image, | |
prompt: str, | |
num_inference_steps: int = 10, | |
): | |
time_cost_str = '' | |
run_task_time = 0 | |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str) | |
upscaled_image = upscale_pipe( | |
prompt=prompt, | |
image=input_image, | |
num_inference_steps=num_inference_steps, | |
).images[0] | |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str) | |
return upscaled_image, time_cost_str | |
def get_time_cost(run_task_time, time_cost_str): | |
now_time = int(time.time()*1000) | |
if run_task_time == 0: | |
time_cost_str = 'start' | |
else: | |
if time_cost_str != '': | |
time_cost_str += f'-->' | |
time_cost_str += f'{now_time - run_task_time}' | |
run_task_time = now_time | |
return run_task_time, time_cost_str | |
with gr.Blocks() as demo: | |
croper = gr.State() | |
with gr.Row(): | |
with gr.Column(): | |
input_image_prompt = gr.Textbox(lines=1, label="Input Image Prompt", value=DEFAULT_SRC_PROMPT) | |
with gr.Column(): | |
num_inference_steps = gr.Number(label="Num Inference Steps", value=5) | |
generate_size = gr.Number(label="Generate Size", value=512) | |
g_btn = gr.Button("Upscale Image") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(label="Input Image", type="pil") | |
with gr.Column(): | |
restored_image = gr.Image(label="Restored Image", format="png", type="pil", interactive=False) | |
origin_area_image = gr.Image(label="Origin Area Image", format="png", type="pil", interactive=False, visible=False) | |
upscaled_image = gr.Image(label="Upscaled Image", format="png", type="pil", interactive=False) | |
download_path = gr.File(label="Download the output image", interactive=False) | |
generated_cost = gr.Textbox(label="Time cost by step (ms):", visible=True, interactive=False) | |
category = gr.Textbox(label="Category", value=DEFAULT_CATEGORY, visible=False) | |
mask_expansion = gr.Number(label="Mask Expansion", value=20, visible=False) | |
mask_dilation = gr.Slider(minimum=0, maximum=10, value=2, step=1, label="Mask Dilation", visible=False) | |
g_btn.click( | |
fn=segment_image, | |
inputs=[input_image, category, generate_size, mask_expansion, mask_dilation], | |
outputs=[origin_area_image, croper], | |
).success( | |
fn=upscale_image, | |
inputs=[origin_area_image, input_image_prompt, num_inference_steps], | |
outputs=[upscaled_image, generated_cost], | |
).success( | |
fn=restore_result, | |
inputs=[croper, category, upscaled_image], | |
outputs=[restored_image, download_path], | |
) | |
return demo | |