Spaces:
Runtime error
Runtime error
# # import streamlit as st | |
# # import transformers | |
# # import torch | |
# # # Load the model and tokenizer | |
# # model = transformers.AutoModelForSequenceClassification.from_pretrained("DeeeTeeee01/twitter-xlm-roberta-base-sentiment_dee") | |
# # tokenizer = transformers.AutoTokenizer.from_pretrained("DeeeTeeee01/twitter-xlm-roberta-base-sentiment_dee") | |
# # # Define the function for sentiment analysis | |
# # @st.cache_resource | |
# # def predict_sentiment(text): | |
# # # Load the pipeline. | |
# # pipeline = transformers.pipeline("sentiment-analysis") | |
# # # Predict the sentiment. | |
# # prediction = pipeline(text) | |
# # sentiment = prediction[0]["label"] | |
# # score = prediction[0]["score"] | |
# # return sentiment, score | |
# # # Setting the page configurations | |
# # st.set_page_config( | |
# # page_title="Sentiment Analysis App", | |
# # page_icon=":smile:", | |
# # layout="wide", | |
# # initial_sidebar_state="auto", | |
# # ) | |
# # # Add description and title | |
# # st.write(""" | |
# # # Predict if your text is Positive, Negative or Nuetral ... | |
# # Please type your text and press ENTER key to know if your text is positive, negative, or neutral sentiment! | |
# # """) | |
# # # Add image | |
# # image = st.image("sentiment.jpeg", width=400) | |
# # # Get user input | |
# # text = st.text_input("Type here:") | |
# # # Define the CSS style for the app | |
# # st.markdown( | |
# # """ | |
# # <style> | |
# # body { | |
# # background-color: #f5f5f5; | |
# # } | |
# # h1 { | |
# # color: #4e79a7; | |
# # } | |
# # </style> | |
# # """, | |
# # unsafe_allow_html=True | |
# # ) | |
# # # Show sentiment output | |
# # if text: | |
# # sentiment, score = predict_sentiment(text) | |
# # if sentiment == "Positive": | |
# # st.success(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!") | |
# # elif sentiment == "Negative": | |
# # st.error(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!") | |
# # else: | |
# # st.warning(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!") | |
# import streamlit as st | |
# import transformers | |
# import torch | |
# # Load the model and tokenizer | |
# model = transformers.AutoModelForSequenceClassification.from_pretrained("DeeeTeeee01/mytest_trainer_roberta-base") | |
# tokenizer = transformers.AutoTokenizer.from_pretrained("DeeeTeeee01/mytest_trainer_roberta-base") | |
# # Define the function for sentiment analysis | |
# @st.cache_resource | |
# def predict_sentiment(text): | |
# # Load the pipeline | |
# pipeline = transformers.pipeline("sentiment-analysis") | |
# # Predict the sentiment | |
# prediction = pipeline(text) | |
# sentiment = prediction[0]["label"] | |
# score = prediction[0]["score"] | |
# return sentiment, score | |
# # Setting the page configurations | |
# st.set_page_config( | |
# page_title="Sentiment Analysis App", | |
# page_icon=":smile:", | |
# layout="wide", | |
# initial_sidebar_state="auto", | |
# ) | |
# # Add description and title | |
# st.write(""" | |
# # Predict if your text is Positive, Negative or Neutral ... | |
# Please type your text and click the Predict button to know if your text has a positive, negative or neutral sentiment! | |
# """) | |
# # Add image | |
# image = st.image("sentiment.jpeg", width=400) | |
# # Get user input | |
# text = st.text_input("Type here:") | |
# # Add Predict button | |
# predict_button = st.button("Predict") | |
# # Define the CSS style for the app | |
# st.markdown( | |
# """ | |
# <style> | |
# body { | |
# background: linear-gradient(to right, #4e79a7, #86a8e7); | |
# color: lightblue; | |
# } | |
# h1 { | |
# color: #4e79a7; | |
# } | |
# </style> | |
# """, | |
# unsafe_allow_html=True | |
# ) | |
# # Show sentiment output | |
# if predict_button and text: | |
# sentiment, score = predict_sentiment(text) | |
# if sentiment == "Positive": | |
# st.success(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!") | |
# elif sentiment == "Negative": | |
# st.error(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!") | |
# else: | |
# st.warning(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!") | |
import streamlit as st | |
import transformers | |
# Load model and tokenizer | |
model = transformers.AutoModelForSequenceClassification.from_pretrained("DeeeTeeee01/mytest_trainer_roberta-base") | |
tokenizer = transformers.AutoTokenizer.from_pretrained("DeeeTeeee01/mytest_trainer_roberta-base") | |
def predict_sentiment(text): | |
inputs = tokenizer(text, return_tensors="pt") | |
outputs = model(**inputs) | |
# # Get full model outputs | |
# outputs = model(text) | |
# Extract probabilities | |
negative = outputs[0][0] | |
positive = outputs[0][1] | |
neutral = outputs[0][2] | |
return negative, positive, neutral | |
# Page config | |
st.set_page_config(page_title="Sentiment Analysis", page_icon=":smile:") | |
# Title and intro text | |
st.header("Predict Text Sentiment") | |
st.write("Enter text below to classify its sentiment as Positive, Negative or Neutral") | |
# Input text | |
text = st.text_input("Enter text:") | |
# Predict button | |
predict_button = st.button("Predict") | |
# Prediction output | |
if predict_button and text: | |
# Get probabilities | |
negative, positive, neutral = predict_sentiment(text) | |
# Display probabilities | |
st.metric("Negative", f"{negative*100:.2f}%") | |
st.metric("Positive", f"{positive*100:.2f}%") | |
st.metric("Neutral", f"{neutral*100:.2f}%") | |