Spaces:
Runtime error
Runtime error
Commit
·
1f9eb21
1
Parent(s):
4ded591
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,18 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# import streamlit as st
|
| 2 |
# import transformers
|
| 3 |
# import torch
|
| 4 |
|
| 5 |
# # Load the model and tokenizer
|
| 6 |
-
# model = transformers.AutoModelForSequenceClassification.from_pretrained("DeeeTeeee01/
|
| 7 |
-
# tokenizer = transformers.AutoTokenizer.from_pretrained("DeeeTeeee01/
|
| 8 |
|
| 9 |
# # Define the function for sentiment analysis
|
| 10 |
# @st.cache_resource
|
| 11 |
# def predict_sentiment(text):
|
| 12 |
-
# # Load the pipeline
|
| 13 |
# pipeline = transformers.pipeline("sentiment-analysis")
|
| 14 |
|
| 15 |
-
|
|
|
|
| 16 |
# prediction = pipeline(text)
|
| 17 |
# sentiment = prediction[0]["label"]
|
| 18 |
# score = prediction[0]["score"]
|
|
@@ -29,23 +97,26 @@
|
|
| 29 |
|
| 30 |
# # Add description and title
|
| 31 |
# st.write("""
|
| 32 |
-
# # Predict if your text is
|
| 33 |
-
# Please type your text and
|
| 34 |
# """)
|
| 35 |
|
| 36 |
-
|
| 37 |
# # Add image
|
| 38 |
# image = st.image("sentiment.jpeg", width=400)
|
| 39 |
|
| 40 |
# # Get user input
|
| 41 |
# text = st.text_input("Type here:")
|
| 42 |
|
|
|
|
|
|
|
|
|
|
| 43 |
# # Define the CSS style for the app
|
| 44 |
# st.markdown(
|
| 45 |
# """
|
| 46 |
# <style>
|
| 47 |
# body {
|
| 48 |
-
# background
|
|
|
|
| 49 |
# }
|
| 50 |
# h1 {
|
| 51 |
# color: #4e79a7;
|
|
@@ -56,7 +127,7 @@
|
|
| 56 |
# )
|
| 57 |
|
| 58 |
# # Show sentiment output
|
| 59 |
-
# if text:
|
| 60 |
# sentiment, score = predict_sentiment(text)
|
| 61 |
# if sentiment == "Positive":
|
| 62 |
# st.success(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
|
|
@@ -65,72 +136,47 @@
|
|
| 65 |
# else:
|
| 66 |
# st.warning(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
|
| 67 |
|
|
|
|
| 68 |
import streamlit as st
|
| 69 |
import transformers
|
| 70 |
-
import torch
|
| 71 |
|
| 72 |
-
# Load
|
| 73 |
model = transformers.AutoModelForSequenceClassification.from_pretrained("DeeeTeeee01/mytest_trainer_roberta-base")
|
| 74 |
tokenizer = transformers.AutoTokenizer.from_pretrained("DeeeTeeee01/mytest_trainer_roberta-base")
|
| 75 |
|
| 76 |
-
# Define the function for sentiment analysis
|
| 77 |
@st.cache_resource
|
| 78 |
def predict_sentiment(text):
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
)
|
| 96 |
-
|
| 97 |
-
#
|
| 98 |
-
st.
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
""
|
| 102 |
-
|
| 103 |
-
#
|
| 104 |
-
image = st.image("sentiment.jpeg", width=400)
|
| 105 |
-
|
| 106 |
-
# Get user input
|
| 107 |
-
text = st.text_input("Type here:")
|
| 108 |
-
|
| 109 |
-
# Add Predict button
|
| 110 |
-
predict_button = st.button("Predict")
|
| 111 |
-
|
| 112 |
-
# Define the CSS style for the app
|
| 113 |
-
st.markdown(
|
| 114 |
-
"""
|
| 115 |
-
<style>
|
| 116 |
-
body {
|
| 117 |
-
background: linear-gradient(to right, #4e79a7, #86a8e7);
|
| 118 |
-
color: lightblue;
|
| 119 |
-
}
|
| 120 |
-
h1 {
|
| 121 |
-
color: #4e79a7;
|
| 122 |
-
}
|
| 123 |
-
</style>
|
| 124 |
-
""",
|
| 125 |
-
unsafe_allow_html=True
|
| 126 |
-
)
|
| 127 |
-
|
| 128 |
-
# Show sentiment output
|
| 129 |
if predict_button and text:
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
|
|
|
|
|
| 1 |
+
# # import streamlit as st
|
| 2 |
+
# # import transformers
|
| 3 |
+
# # import torch
|
| 4 |
+
|
| 5 |
+
# # # Load the model and tokenizer
|
| 6 |
+
# # model = transformers.AutoModelForSequenceClassification.from_pretrained("DeeeTeeee01/twitter-xlm-roberta-base-sentiment_dee")
|
| 7 |
+
# # tokenizer = transformers.AutoTokenizer.from_pretrained("DeeeTeeee01/twitter-xlm-roberta-base-sentiment_dee")
|
| 8 |
+
|
| 9 |
+
# # # Define the function for sentiment analysis
|
| 10 |
+
# # @st.cache_resource
|
| 11 |
+
# # def predict_sentiment(text):
|
| 12 |
+
# # # Load the pipeline.
|
| 13 |
+
# # pipeline = transformers.pipeline("sentiment-analysis")
|
| 14 |
+
|
| 15 |
+
# # # Predict the sentiment.
|
| 16 |
+
# # prediction = pipeline(text)
|
| 17 |
+
# # sentiment = prediction[0]["label"]
|
| 18 |
+
# # score = prediction[0]["score"]
|
| 19 |
+
|
| 20 |
+
# # return sentiment, score
|
| 21 |
+
|
| 22 |
+
# # # Setting the page configurations
|
| 23 |
+
# # st.set_page_config(
|
| 24 |
+
# # page_title="Sentiment Analysis App",
|
| 25 |
+
# # page_icon=":smile:",
|
| 26 |
+
# # layout="wide",
|
| 27 |
+
# # initial_sidebar_state="auto",
|
| 28 |
+
# # )
|
| 29 |
+
|
| 30 |
+
# # # Add description and title
|
| 31 |
+
# # st.write("""
|
| 32 |
+
# # # Predict if your text is Positive, Negative or Nuetral ...
|
| 33 |
+
# # Please type your text and press ENTER key to know if your text is positive, negative, or neutral sentiment!
|
| 34 |
+
# # """)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
# # # Add image
|
| 38 |
+
# # image = st.image("sentiment.jpeg", width=400)
|
| 39 |
+
|
| 40 |
+
# # # Get user input
|
| 41 |
+
# # text = st.text_input("Type here:")
|
| 42 |
+
|
| 43 |
+
# # # Define the CSS style for the app
|
| 44 |
+
# # st.markdown(
|
| 45 |
+
# # """
|
| 46 |
+
# # <style>
|
| 47 |
+
# # body {
|
| 48 |
+
# # background-color: #f5f5f5;
|
| 49 |
+
# # }
|
| 50 |
+
# # h1 {
|
| 51 |
+
# # color: #4e79a7;
|
| 52 |
+
# # }
|
| 53 |
+
# # </style>
|
| 54 |
+
# # """,
|
| 55 |
+
# # unsafe_allow_html=True
|
| 56 |
+
# # )
|
| 57 |
+
|
| 58 |
+
# # # Show sentiment output
|
| 59 |
+
# # if text:
|
| 60 |
+
# # sentiment, score = predict_sentiment(text)
|
| 61 |
+
# # if sentiment == "Positive":
|
| 62 |
+
# # st.success(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
|
| 63 |
+
# # elif sentiment == "Negative":
|
| 64 |
+
# # st.error(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
|
| 65 |
+
# # else:
|
| 66 |
+
# # st.warning(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
|
| 67 |
+
|
| 68 |
# import streamlit as st
|
| 69 |
# import transformers
|
| 70 |
# import torch
|
| 71 |
|
| 72 |
# # Load the model and tokenizer
|
| 73 |
+
# model = transformers.AutoModelForSequenceClassification.from_pretrained("DeeeTeeee01/mytest_trainer_roberta-base")
|
| 74 |
+
# tokenizer = transformers.AutoTokenizer.from_pretrained("DeeeTeeee01/mytest_trainer_roberta-base")
|
| 75 |
|
| 76 |
# # Define the function for sentiment analysis
|
| 77 |
# @st.cache_resource
|
| 78 |
# def predict_sentiment(text):
|
| 79 |
+
# # Load the pipeline
|
| 80 |
# pipeline = transformers.pipeline("sentiment-analysis")
|
| 81 |
|
| 82 |
+
|
| 83 |
+
# # Predict the sentiment
|
| 84 |
# prediction = pipeline(text)
|
| 85 |
# sentiment = prediction[0]["label"]
|
| 86 |
# score = prediction[0]["score"]
|
|
|
|
| 97 |
|
| 98 |
# # Add description and title
|
| 99 |
# st.write("""
|
| 100 |
+
# # Predict if your text is Positive, Negative or Neutral ...
|
| 101 |
+
# Please type your text and click the Predict button to know if your text has a positive, negative or neutral sentiment!
|
| 102 |
# """)
|
| 103 |
|
|
|
|
| 104 |
# # Add image
|
| 105 |
# image = st.image("sentiment.jpeg", width=400)
|
| 106 |
|
| 107 |
# # Get user input
|
| 108 |
# text = st.text_input("Type here:")
|
| 109 |
|
| 110 |
+
# # Add Predict button
|
| 111 |
+
# predict_button = st.button("Predict")
|
| 112 |
+
|
| 113 |
# # Define the CSS style for the app
|
| 114 |
# st.markdown(
|
| 115 |
# """
|
| 116 |
# <style>
|
| 117 |
# body {
|
| 118 |
+
# background: linear-gradient(to right, #4e79a7, #86a8e7);
|
| 119 |
+
# color: lightblue;
|
| 120 |
# }
|
| 121 |
# h1 {
|
| 122 |
# color: #4e79a7;
|
|
|
|
| 127 |
# )
|
| 128 |
|
| 129 |
# # Show sentiment output
|
| 130 |
+
# if predict_button and text:
|
| 131 |
# sentiment, score = predict_sentiment(text)
|
| 132 |
# if sentiment == "Positive":
|
| 133 |
# st.success(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
|
|
|
|
| 136 |
# else:
|
| 137 |
# st.warning(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
|
| 138 |
|
| 139 |
+
|
| 140 |
import streamlit as st
|
| 141 |
import transformers
|
|
|
|
| 142 |
|
| 143 |
+
# Load model and tokenizer
|
| 144 |
model = transformers.AutoModelForSequenceClassification.from_pretrained("DeeeTeeee01/mytest_trainer_roberta-base")
|
| 145 |
tokenizer = transformers.AutoTokenizer.from_pretrained("DeeeTeeee01/mytest_trainer_roberta-base")
|
| 146 |
|
|
|
|
| 147 |
@st.cache_resource
|
| 148 |
def predict_sentiment(text):
|
| 149 |
+
|
| 150 |
+
# Get full model outputs
|
| 151 |
+
outputs = model(text)
|
| 152 |
+
|
| 153 |
+
# Extract probabilities
|
| 154 |
+
negative = outputs[0][0]
|
| 155 |
+
positive = outputs[0][1]
|
| 156 |
+
neutral = outputs[0][2]
|
| 157 |
+
|
| 158 |
+
return negative, positive, neutral
|
| 159 |
+
|
| 160 |
+
# Page config
|
| 161 |
+
st.set_page_config(page_title="Sentiment Analysis", page_icon=":smile:")
|
| 162 |
+
|
| 163 |
+
# Title and intro text
|
| 164 |
+
st.header("Predict Text Sentiment")
|
| 165 |
+
st.write("Enter text below to classify its sentiment as Positive, Negative or Neutral")
|
| 166 |
+
|
| 167 |
+
# Input text
|
| 168 |
+
text = st.text_input("Enter text:")
|
| 169 |
+
|
| 170 |
+
# Predict button
|
| 171 |
+
predict_button = st.button("Predict")
|
| 172 |
+
|
| 173 |
+
# Prediction output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
if predict_button and text:
|
| 175 |
+
|
| 176 |
+
# Get probabilities
|
| 177 |
+
negative, positive, neutral = predict_sentiment(text)
|
| 178 |
+
|
| 179 |
+
# Display probabilities
|
| 180 |
+
st.metric("Negative", f"{negative*100:.2f}%")
|
| 181 |
+
st.metric("Positive", f"{positive*100:.2f}%")
|
| 182 |
+
st.metric("Neutral", f"{neutral*100:.2f}%")
|