Spaces:
Runtime error
Runtime error
Commit
·
1f9eb21
1
Parent(s):
4ded591
Update app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# import streamlit as st
|
2 |
# import transformers
|
3 |
# import torch
|
4 |
|
5 |
# # Load the model and tokenizer
|
6 |
-
# model = transformers.AutoModelForSequenceClassification.from_pretrained("DeeeTeeee01/
|
7 |
-
# tokenizer = transformers.AutoTokenizer.from_pretrained("DeeeTeeee01/
|
8 |
|
9 |
# # Define the function for sentiment analysis
|
10 |
# @st.cache_resource
|
11 |
# def predict_sentiment(text):
|
12 |
-
# # Load the pipeline
|
13 |
# pipeline = transformers.pipeline("sentiment-analysis")
|
14 |
|
15 |
-
|
|
|
16 |
# prediction = pipeline(text)
|
17 |
# sentiment = prediction[0]["label"]
|
18 |
# score = prediction[0]["score"]
|
@@ -29,23 +97,26 @@
|
|
29 |
|
30 |
# # Add description and title
|
31 |
# st.write("""
|
32 |
-
# # Predict if your text is
|
33 |
-
# Please type your text and
|
34 |
# """)
|
35 |
|
36 |
-
|
37 |
# # Add image
|
38 |
# image = st.image("sentiment.jpeg", width=400)
|
39 |
|
40 |
# # Get user input
|
41 |
# text = st.text_input("Type here:")
|
42 |
|
|
|
|
|
|
|
43 |
# # Define the CSS style for the app
|
44 |
# st.markdown(
|
45 |
# """
|
46 |
# <style>
|
47 |
# body {
|
48 |
-
# background
|
|
|
49 |
# }
|
50 |
# h1 {
|
51 |
# color: #4e79a7;
|
@@ -56,7 +127,7 @@
|
|
56 |
# )
|
57 |
|
58 |
# # Show sentiment output
|
59 |
-
# if text:
|
60 |
# sentiment, score = predict_sentiment(text)
|
61 |
# if sentiment == "Positive":
|
62 |
# st.success(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
|
@@ -65,72 +136,47 @@
|
|
65 |
# else:
|
66 |
# st.warning(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
|
67 |
|
|
|
68 |
import streamlit as st
|
69 |
import transformers
|
70 |
-
import torch
|
71 |
|
72 |
-
# Load
|
73 |
model = transformers.AutoModelForSequenceClassification.from_pretrained("DeeeTeeee01/mytest_trainer_roberta-base")
|
74 |
tokenizer = transformers.AutoTokenizer.from_pretrained("DeeeTeeee01/mytest_trainer_roberta-base")
|
75 |
|
76 |
-
# Define the function for sentiment analysis
|
77 |
@st.cache_resource
|
78 |
def predict_sentiment(text):
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
)
|
96 |
-
|
97 |
-
#
|
98 |
-
st.
|
99 |
-
|
100 |
-
|
101 |
-
""
|
102 |
-
|
103 |
-
#
|
104 |
-
image = st.image("sentiment.jpeg", width=400)
|
105 |
-
|
106 |
-
# Get user input
|
107 |
-
text = st.text_input("Type here:")
|
108 |
-
|
109 |
-
# Add Predict button
|
110 |
-
predict_button = st.button("Predict")
|
111 |
-
|
112 |
-
# Define the CSS style for the app
|
113 |
-
st.markdown(
|
114 |
-
"""
|
115 |
-
<style>
|
116 |
-
body {
|
117 |
-
background: linear-gradient(to right, #4e79a7, #86a8e7);
|
118 |
-
color: lightblue;
|
119 |
-
}
|
120 |
-
h1 {
|
121 |
-
color: #4e79a7;
|
122 |
-
}
|
123 |
-
</style>
|
124 |
-
""",
|
125 |
-
unsafe_allow_html=True
|
126 |
-
)
|
127 |
-
|
128 |
-
# Show sentiment output
|
129 |
if predict_button and text:
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
|
|
|
1 |
+
# # import streamlit as st
|
2 |
+
# # import transformers
|
3 |
+
# # import torch
|
4 |
+
|
5 |
+
# # # Load the model and tokenizer
|
6 |
+
# # model = transformers.AutoModelForSequenceClassification.from_pretrained("DeeeTeeee01/twitter-xlm-roberta-base-sentiment_dee")
|
7 |
+
# # tokenizer = transformers.AutoTokenizer.from_pretrained("DeeeTeeee01/twitter-xlm-roberta-base-sentiment_dee")
|
8 |
+
|
9 |
+
# # # Define the function for sentiment analysis
|
10 |
+
# # @st.cache_resource
|
11 |
+
# # def predict_sentiment(text):
|
12 |
+
# # # Load the pipeline.
|
13 |
+
# # pipeline = transformers.pipeline("sentiment-analysis")
|
14 |
+
|
15 |
+
# # # Predict the sentiment.
|
16 |
+
# # prediction = pipeline(text)
|
17 |
+
# # sentiment = prediction[0]["label"]
|
18 |
+
# # score = prediction[0]["score"]
|
19 |
+
|
20 |
+
# # return sentiment, score
|
21 |
+
|
22 |
+
# # # Setting the page configurations
|
23 |
+
# # st.set_page_config(
|
24 |
+
# # page_title="Sentiment Analysis App",
|
25 |
+
# # page_icon=":smile:",
|
26 |
+
# # layout="wide",
|
27 |
+
# # initial_sidebar_state="auto",
|
28 |
+
# # )
|
29 |
+
|
30 |
+
# # # Add description and title
|
31 |
+
# # st.write("""
|
32 |
+
# # # Predict if your text is Positive, Negative or Nuetral ...
|
33 |
+
# # Please type your text and press ENTER key to know if your text is positive, negative, or neutral sentiment!
|
34 |
+
# # """)
|
35 |
+
|
36 |
+
|
37 |
+
# # # Add image
|
38 |
+
# # image = st.image("sentiment.jpeg", width=400)
|
39 |
+
|
40 |
+
# # # Get user input
|
41 |
+
# # text = st.text_input("Type here:")
|
42 |
+
|
43 |
+
# # # Define the CSS style for the app
|
44 |
+
# # st.markdown(
|
45 |
+
# # """
|
46 |
+
# # <style>
|
47 |
+
# # body {
|
48 |
+
# # background-color: #f5f5f5;
|
49 |
+
# # }
|
50 |
+
# # h1 {
|
51 |
+
# # color: #4e79a7;
|
52 |
+
# # }
|
53 |
+
# # </style>
|
54 |
+
# # """,
|
55 |
+
# # unsafe_allow_html=True
|
56 |
+
# # )
|
57 |
+
|
58 |
+
# # # Show sentiment output
|
59 |
+
# # if text:
|
60 |
+
# # sentiment, score = predict_sentiment(text)
|
61 |
+
# # if sentiment == "Positive":
|
62 |
+
# # st.success(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
|
63 |
+
# # elif sentiment == "Negative":
|
64 |
+
# # st.error(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
|
65 |
+
# # else:
|
66 |
+
# # st.warning(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
|
67 |
+
|
68 |
# import streamlit as st
|
69 |
# import transformers
|
70 |
# import torch
|
71 |
|
72 |
# # Load the model and tokenizer
|
73 |
+
# model = transformers.AutoModelForSequenceClassification.from_pretrained("DeeeTeeee01/mytest_trainer_roberta-base")
|
74 |
+
# tokenizer = transformers.AutoTokenizer.from_pretrained("DeeeTeeee01/mytest_trainer_roberta-base")
|
75 |
|
76 |
# # Define the function for sentiment analysis
|
77 |
# @st.cache_resource
|
78 |
# def predict_sentiment(text):
|
79 |
+
# # Load the pipeline
|
80 |
# pipeline = transformers.pipeline("sentiment-analysis")
|
81 |
|
82 |
+
|
83 |
+
# # Predict the sentiment
|
84 |
# prediction = pipeline(text)
|
85 |
# sentiment = prediction[0]["label"]
|
86 |
# score = prediction[0]["score"]
|
|
|
97 |
|
98 |
# # Add description and title
|
99 |
# st.write("""
|
100 |
+
# # Predict if your text is Positive, Negative or Neutral ...
|
101 |
+
# Please type your text and click the Predict button to know if your text has a positive, negative or neutral sentiment!
|
102 |
# """)
|
103 |
|
|
|
104 |
# # Add image
|
105 |
# image = st.image("sentiment.jpeg", width=400)
|
106 |
|
107 |
# # Get user input
|
108 |
# text = st.text_input("Type here:")
|
109 |
|
110 |
+
# # Add Predict button
|
111 |
+
# predict_button = st.button("Predict")
|
112 |
+
|
113 |
# # Define the CSS style for the app
|
114 |
# st.markdown(
|
115 |
# """
|
116 |
# <style>
|
117 |
# body {
|
118 |
+
# background: linear-gradient(to right, #4e79a7, #86a8e7);
|
119 |
+
# color: lightblue;
|
120 |
# }
|
121 |
# h1 {
|
122 |
# color: #4e79a7;
|
|
|
127 |
# )
|
128 |
|
129 |
# # Show sentiment output
|
130 |
+
# if predict_button and text:
|
131 |
# sentiment, score = predict_sentiment(text)
|
132 |
# if sentiment == "Positive":
|
133 |
# st.success(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
|
|
|
136 |
# else:
|
137 |
# st.warning(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
|
138 |
|
139 |
+
|
140 |
import streamlit as st
|
141 |
import transformers
|
|
|
142 |
|
143 |
+
# Load model and tokenizer
|
144 |
model = transformers.AutoModelForSequenceClassification.from_pretrained("DeeeTeeee01/mytest_trainer_roberta-base")
|
145 |
tokenizer = transformers.AutoTokenizer.from_pretrained("DeeeTeeee01/mytest_trainer_roberta-base")
|
146 |
|
|
|
147 |
@st.cache_resource
|
148 |
def predict_sentiment(text):
|
149 |
+
|
150 |
+
# Get full model outputs
|
151 |
+
outputs = model(text)
|
152 |
+
|
153 |
+
# Extract probabilities
|
154 |
+
negative = outputs[0][0]
|
155 |
+
positive = outputs[0][1]
|
156 |
+
neutral = outputs[0][2]
|
157 |
+
|
158 |
+
return negative, positive, neutral
|
159 |
+
|
160 |
+
# Page config
|
161 |
+
st.set_page_config(page_title="Sentiment Analysis", page_icon=":smile:")
|
162 |
+
|
163 |
+
# Title and intro text
|
164 |
+
st.header("Predict Text Sentiment")
|
165 |
+
st.write("Enter text below to classify its sentiment as Positive, Negative or Neutral")
|
166 |
+
|
167 |
+
# Input text
|
168 |
+
text = st.text_input("Enter text:")
|
169 |
+
|
170 |
+
# Predict button
|
171 |
+
predict_button = st.button("Predict")
|
172 |
+
|
173 |
+
# Prediction output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
if predict_button and text:
|
175 |
+
|
176 |
+
# Get probabilities
|
177 |
+
negative, positive, neutral = predict_sentiment(text)
|
178 |
+
|
179 |
+
# Display probabilities
|
180 |
+
st.metric("Negative", f"{negative*100:.2f}%")
|
181 |
+
st.metric("Positive", f"{positive*100:.2f}%")
|
182 |
+
st.metric("Neutral", f"{neutral*100:.2f}%")
|