DeeeTeeee01 commited on
Commit
5757326
·
1 Parent(s): 15ef111

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +78 -8
app.py CHANGED
@@ -1,3 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import streamlit as st
2
  import transformers
3
  import torch
@@ -9,10 +76,10 @@ tokenizer = transformers.AutoTokenizer.from_pretrained("DeeeTeeee01/twitter-xlm-
9
  # Define the function for sentiment analysis
10
  @st.cache_resource
11
  def predict_sentiment(text):
12
- # Load the pipeline.
13
  pipeline = transformers.pipeline("sentiment-analysis")
14
 
15
- # Predict the sentiment.
16
  prediction = pipeline(text)
17
  sentiment = prediction[0]["label"]
18
  score = prediction[0]["score"]
@@ -29,23 +96,26 @@ st.set_page_config(
29
 
30
  # Add description and title
31
  st.write("""
32
- # Predict if your text is Positive, Negative or Nuetral ...
33
- Please type your text and press ENTER key to know if your text is positive, negative, or neutral sentiment!
34
  """)
35
 
36
-
37
  # Add image
38
  image = st.image("sentiment.jpeg", width=400)
39
 
40
  # Get user input
41
  text = st.text_input("Type here:")
42
 
 
 
 
43
  # Define the CSS style for the app
44
  st.markdown(
45
  """
46
  <style>
47
  body {
48
- background-color: #f5f5f5;
 
49
  }
50
  h1 {
51
  color: #4e79a7;
@@ -56,11 +126,11 @@ unsafe_allow_html=True
56
  )
57
 
58
  # Show sentiment output
59
- if text:
60
  sentiment, score = predict_sentiment(text)
61
  if sentiment == "Positive":
62
  st.success(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
63
  elif sentiment == "Negative":
64
  st.error(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
65
  else:
66
- st.warning(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
 
1
+ # import streamlit as st
2
+ # import transformers
3
+ # import torch
4
+
5
+ # # Load the model and tokenizer
6
+ # model = transformers.AutoModelForSequenceClassification.from_pretrained("DeeeTeeee01/twitter-xlm-roberta-base-sentiment_dee")
7
+ # tokenizer = transformers.AutoTokenizer.from_pretrained("DeeeTeeee01/twitter-xlm-roberta-base-sentiment_dee")
8
+
9
+ # # Define the function for sentiment analysis
10
+ # @st.cache_resource
11
+ # def predict_sentiment(text):
12
+ # # Load the pipeline.
13
+ # pipeline = transformers.pipeline("sentiment-analysis")
14
+
15
+ # # Predict the sentiment.
16
+ # prediction = pipeline(text)
17
+ # sentiment = prediction[0]["label"]
18
+ # score = prediction[0]["score"]
19
+
20
+ # return sentiment, score
21
+
22
+ # # Setting the page configurations
23
+ # st.set_page_config(
24
+ # page_title="Sentiment Analysis App",
25
+ # page_icon=":smile:",
26
+ # layout="wide",
27
+ # initial_sidebar_state="auto",
28
+ # )
29
+
30
+ # # Add description and title
31
+ # st.write("""
32
+ # # Predict if your text is Positive, Negative or Nuetral ...
33
+ # Please type your text and press ENTER key to know if your text is positive, negative, or neutral sentiment!
34
+ # """)
35
+
36
+
37
+ # # Add image
38
+ # image = st.image("sentiment.jpeg", width=400)
39
+
40
+ # # Get user input
41
+ # text = st.text_input("Type here:")
42
+
43
+ # # Define the CSS style for the app
44
+ # st.markdown(
45
+ # """
46
+ # <style>
47
+ # body {
48
+ # background-color: #f5f5f5;
49
+ # }
50
+ # h1 {
51
+ # color: #4e79a7;
52
+ # }
53
+ # </style>
54
+ # """,
55
+ # unsafe_allow_html=True
56
+ # )
57
+
58
+ # # Show sentiment output
59
+ # if text:
60
+ # sentiment, score = predict_sentiment(text)
61
+ # if sentiment == "Positive":
62
+ # st.success(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
63
+ # elif sentiment == "Negative":
64
+ # st.error(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
65
+ # else:
66
+ # st.warning(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
67
+
68
  import streamlit as st
69
  import transformers
70
  import torch
 
76
  # Define the function for sentiment analysis
77
  @st.cache_resource
78
  def predict_sentiment(text):
79
+ # Load the pipeline
80
  pipeline = transformers.pipeline("sentiment-analysis")
81
 
82
+ # Predict the sentiment
83
  prediction = pipeline(text)
84
  sentiment = prediction[0]["label"]
85
  score = prediction[0]["score"]
 
96
 
97
  # Add description and title
98
  st.write("""
99
+ # Predict if your text is Positive, Negative, or Neutral ...
100
+ Please type your text and click the Predict button to know if your text has a positive, negative, or neutral sentiment!
101
  """)
102
 
 
103
  # Add image
104
  image = st.image("sentiment.jpeg", width=400)
105
 
106
  # Get user input
107
  text = st.text_input("Type here:")
108
 
109
+ # Add Predict button
110
+ predict_button = st.button("Predict")
111
+
112
  # Define the CSS style for the app
113
  st.markdown(
114
  """
115
  <style>
116
  body {
117
+ background: linear-gradient(to right, #4e79a7, #86a8e7);
118
+ color: white;
119
  }
120
  h1 {
121
  color: #4e79a7;
 
126
  )
127
 
128
  # Show sentiment output
129
+ if predict_button and text:
130
  sentiment, score = predict_sentiment(text)
131
  if sentiment == "Positive":
132
  st.success(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
133
  elif sentiment == "Negative":
134
  st.error(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
135
  else:
136
+ st.warning(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")