Spaces:
Runtime error
Runtime error
Commit
·
5757326
1
Parent(s):
15ef111
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import transformers
|
3 |
import torch
|
@@ -9,10 +76,10 @@ tokenizer = transformers.AutoTokenizer.from_pretrained("DeeeTeeee01/twitter-xlm-
|
|
9 |
# Define the function for sentiment analysis
|
10 |
@st.cache_resource
|
11 |
def predict_sentiment(text):
|
12 |
-
# Load the pipeline
|
13 |
pipeline = transformers.pipeline("sentiment-analysis")
|
14 |
|
15 |
-
# Predict the sentiment
|
16 |
prediction = pipeline(text)
|
17 |
sentiment = prediction[0]["label"]
|
18 |
score = prediction[0]["score"]
|
@@ -29,23 +96,26 @@ st.set_page_config(
|
|
29 |
|
30 |
# Add description and title
|
31 |
st.write("""
|
32 |
-
# Predict if your text is
|
33 |
-
Please type your text and
|
34 |
""")
|
35 |
|
36 |
-
|
37 |
# Add image
|
38 |
image = st.image("sentiment.jpeg", width=400)
|
39 |
|
40 |
# Get user input
|
41 |
text = st.text_input("Type here:")
|
42 |
|
|
|
|
|
|
|
43 |
# Define the CSS style for the app
|
44 |
st.markdown(
|
45 |
"""
|
46 |
<style>
|
47 |
body {
|
48 |
-
background
|
|
|
49 |
}
|
50 |
h1 {
|
51 |
color: #4e79a7;
|
@@ -56,11 +126,11 @@ unsafe_allow_html=True
|
|
56 |
)
|
57 |
|
58 |
# Show sentiment output
|
59 |
-
if text:
|
60 |
sentiment, score = predict_sentiment(text)
|
61 |
if sentiment == "Positive":
|
62 |
st.success(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
|
63 |
elif sentiment == "Negative":
|
64 |
st.error(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
|
65 |
else:
|
66 |
-
st.warning(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
|
|
|
1 |
+
# import streamlit as st
|
2 |
+
# import transformers
|
3 |
+
# import torch
|
4 |
+
|
5 |
+
# # Load the model and tokenizer
|
6 |
+
# model = transformers.AutoModelForSequenceClassification.from_pretrained("DeeeTeeee01/twitter-xlm-roberta-base-sentiment_dee")
|
7 |
+
# tokenizer = transformers.AutoTokenizer.from_pretrained("DeeeTeeee01/twitter-xlm-roberta-base-sentiment_dee")
|
8 |
+
|
9 |
+
# # Define the function for sentiment analysis
|
10 |
+
# @st.cache_resource
|
11 |
+
# def predict_sentiment(text):
|
12 |
+
# # Load the pipeline.
|
13 |
+
# pipeline = transformers.pipeline("sentiment-analysis")
|
14 |
+
|
15 |
+
# # Predict the sentiment.
|
16 |
+
# prediction = pipeline(text)
|
17 |
+
# sentiment = prediction[0]["label"]
|
18 |
+
# score = prediction[0]["score"]
|
19 |
+
|
20 |
+
# return sentiment, score
|
21 |
+
|
22 |
+
# # Setting the page configurations
|
23 |
+
# st.set_page_config(
|
24 |
+
# page_title="Sentiment Analysis App",
|
25 |
+
# page_icon=":smile:",
|
26 |
+
# layout="wide",
|
27 |
+
# initial_sidebar_state="auto",
|
28 |
+
# )
|
29 |
+
|
30 |
+
# # Add description and title
|
31 |
+
# st.write("""
|
32 |
+
# # Predict if your text is Positive, Negative or Nuetral ...
|
33 |
+
# Please type your text and press ENTER key to know if your text is positive, negative, or neutral sentiment!
|
34 |
+
# """)
|
35 |
+
|
36 |
+
|
37 |
+
# # Add image
|
38 |
+
# image = st.image("sentiment.jpeg", width=400)
|
39 |
+
|
40 |
+
# # Get user input
|
41 |
+
# text = st.text_input("Type here:")
|
42 |
+
|
43 |
+
# # Define the CSS style for the app
|
44 |
+
# st.markdown(
|
45 |
+
# """
|
46 |
+
# <style>
|
47 |
+
# body {
|
48 |
+
# background-color: #f5f5f5;
|
49 |
+
# }
|
50 |
+
# h1 {
|
51 |
+
# color: #4e79a7;
|
52 |
+
# }
|
53 |
+
# </style>
|
54 |
+
# """,
|
55 |
+
# unsafe_allow_html=True
|
56 |
+
# )
|
57 |
+
|
58 |
+
# # Show sentiment output
|
59 |
+
# if text:
|
60 |
+
# sentiment, score = predict_sentiment(text)
|
61 |
+
# if sentiment == "Positive":
|
62 |
+
# st.success(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
|
63 |
+
# elif sentiment == "Negative":
|
64 |
+
# st.error(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
|
65 |
+
# else:
|
66 |
+
# st.warning(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
|
67 |
+
|
68 |
import streamlit as st
|
69 |
import transformers
|
70 |
import torch
|
|
|
76 |
# Define the function for sentiment analysis
|
77 |
@st.cache_resource
|
78 |
def predict_sentiment(text):
|
79 |
+
# Load the pipeline
|
80 |
pipeline = transformers.pipeline("sentiment-analysis")
|
81 |
|
82 |
+
# Predict the sentiment
|
83 |
prediction = pipeline(text)
|
84 |
sentiment = prediction[0]["label"]
|
85 |
score = prediction[0]["score"]
|
|
|
96 |
|
97 |
# Add description and title
|
98 |
st.write("""
|
99 |
+
# Predict if your text is Positive, Negative, or Neutral ...
|
100 |
+
Please type your text and click the Predict button to know if your text has a positive, negative, or neutral sentiment!
|
101 |
""")
|
102 |
|
|
|
103 |
# Add image
|
104 |
image = st.image("sentiment.jpeg", width=400)
|
105 |
|
106 |
# Get user input
|
107 |
text = st.text_input("Type here:")
|
108 |
|
109 |
+
# Add Predict button
|
110 |
+
predict_button = st.button("Predict")
|
111 |
+
|
112 |
# Define the CSS style for the app
|
113 |
st.markdown(
|
114 |
"""
|
115 |
<style>
|
116 |
body {
|
117 |
+
background: linear-gradient(to right, #4e79a7, #86a8e7);
|
118 |
+
color: white;
|
119 |
}
|
120 |
h1 {
|
121 |
color: #4e79a7;
|
|
|
126 |
)
|
127 |
|
128 |
# Show sentiment output
|
129 |
+
if predict_button and text:
|
130 |
sentiment, score = predict_sentiment(text)
|
131 |
if sentiment == "Positive":
|
132 |
st.success(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
|
133 |
elif sentiment == "Negative":
|
134 |
st.error(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
|
135 |
else:
|
136 |
+
st.warning(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
|